高等数学的创新教学
摘 要:高等院校的核心使命就是培养出时代需要的高素质人才,尤其是在高等数学课程上,需要沿用科学化教学理念和方式,使得学生个体创造本能得以全面激活。笔者的任务,便是集中探讨现代高等数学的创新式教学理念和相关教学引导模式,希望能够为高等教育事业可持续竞争发展,提供极为强劲的支持辅助动力。
关键词:高等数学 教学内容 引导模式 创新要点
前言:
当前社会发展的主旋律便是创新,因此培养和发展学生的创新技能,便是现代高等数学教育的核心指标。须知高等数学作为一类抽象的学科,对于广大教学人员来讲,都是凭借公理化体系,即定义-定理-证明-推论类逻辑思路加以教学的,可同步状况下却令学生独立挖掘、分析和解决问题的能力被深深埋没。因此今后高等数学教学的改革工作重心,就在于锻炼学生的创新思维和技能上,而这两类目标的达成,将主要透过教学内容和教学方法上予以细致化呈现。
一、教学理念的创新化改进
高等数学课程不单单属于一类教学工具、知识体系、语言,其更可以说是一种素养、思维模式和文化项目。作为现代专业化高等数学教师,在课堂上需要同步传授高端的数学知识和科学化的思想、方式,锻炼出学生独立学习,以及观察、分析、解决实际问题的技能,确保他们时刻彰显出独特的创新思维和潜质。以上结果便是当前高等数学课程教学内容创新改革的基础点,需要引起相关领导和教学人员的全方位关注。
须知创新化高等数学教学理念,旨在推动学生的全方位合理化发展进程,使得各类学生能够凭借娴熟的数学分析技能得到对应的发展成就,并非一定要在数学领域之中树立声望。因此,要求教师深刻明白数学课程不过是相关实践项目组织的指导依据,学生学习的内容必须要保留一定程度的现实意义和挑战特性,这样才有助于他们自主化地在生活之中进行观察、实验操作、猜测和推理验证。这便要求教师在设计相关教学内容前期,应该尽量透过自然生活、社会科学之中获得灵感,同时设置保留深度研究价值的问题;同时结合当前高等数学学科和科技革新发展趋势,积极探索出多元且可靠的数学教学观念和行为模式,使得传统教学内容得以尽快被替换。
二、教学引导模式的创新化应用
高等数学的创新化教学理念,即教会学生怎样独立地学习,和在实际生活中发现、分析和解决问题,发展至今,则需要同时将知识传播人员和信息技术视为合作咨询角色,使得数学生活、活动和问题化的功能特性得以全方位彰显。需要加以强调的是,关于学生创新精神的培养,是造就创新化高等数学教学引导模式的主流渠道,就是说要求教师务必要尽快摒弃以往鸭架式灌输教学习惯,同时沿用充满探究、科学和创造性的教学管理方式,确保师生教和学活动得以人性化地运行。而现如今高等数学课堂上经常使用启发式教学模式,同时又可顺势细化为尝试指导、引导发现、启发研究和自学辅导等细化的教学方式等。
第一,在进行以往经典内容讲解环节中,教师务必要灵活性地渗透现代思维、方式,并且尽量多的沿用现代化数学专业术语和符号,使得数学教学内容展示窗口和延展接口得以适时地衍生。如积分作为微积分课题中的基础性概念,许多教材在反映这部分课题内容时,都是凭借几类常见实例展示之后,归纳出需要加以研究和演算的极限结果,之后督促同学将这部分和式极限统一定义为积分。相比之下,如若能够在深入牵出分析相关实例的基础上,论证积分概念是为了迎合时代和科技进步需求,而衍生出的研究和解决部分均匀分布量求和问题的方法,包括物质均匀和非均匀分布的物体质量等,便会更加方便学生进行快速吸纳和消化理解。揭示导数,具体是借助均匀变化量变化率除法在非均匀变化量变化率减法之中演变发展而来的;对应的,积分的思维模式,便是在均匀分布量求和问题的乘法在非均匀分布量求和问题解决环节中展开的,其本质层面上属于局部线性化的操作思想。所以说,初等数学课程中的除法和乘法,在高等数学体系中便转化表现为导数和积分。作为现代专业化高等数学教师,理应将该类思想内容统一过渡转接到不同类型数值函数的积分内部,进一步断定积分应用环节中的微元法,实际上就等用于局部线性化的操作方式,长此以往,令学生在参与多元化实践操作基础上,逐渐改善自身利用不同类型积分概念解决实际问题的技能。归结来讲,该类教学内容的创新化设计和传授,能够令大学生领悟到数学课程并非过于僵化和抽象的公式,而是进行各项实际问题分析和解决的科学化器具。
第二,在选取创新化课题和案例过程中,需要谨记的原则便是广而浅、少且精,同时注意要保证凸显对应理论、问题的深化和具体化特征。如在进行极限课题内容讲解过程中,要注意强化学生对知识点的直观理解效果,凸显近似计算原理,以及多媒体信息技术设施和数学程序的应用价值地位,使得学生数学知识灵活化应用技能得到快速培养。在此期间,教师选取的研究对象最好是生活中常见的实际应用型问题,包括政府税率的制定、银行利率的校验解析、公司可持续经营发展战略的制定实施等。总之,作为现代专业化高等数学教师,要积极地收集整合和改良应用各类实际案例,同时加大各类数学工程技术和生态、社会、经济、社会学之间的紧密关联程度,最终将高等数学强大的魅力展示完全。
结语:
对于广大高等数学指导教师来讲,想要确保课堂组织效果的理想性,就务必要具备两类基础性规范条件,分别包括良好的表达和快速吃透教学内容的技能。不过单纯满足上述规范要点还是远远不够的,就是说一类教师如若只能够将关键知识点准确地灌输给学生,而不能启发他们应用这部分知识在生活工作中处理某些事情,学生便无法深入性理解这部分内容并转化为个人实践技能,所谓的素质化教育自然也就无从谈起了。因此,在教学环节中,教师有必要引导学生联系生活实际独立地发现问题,同时配合小组探究整理出可靠的分析和应对措施,毕竟任何科学项目的衍生,都是问题提出、分析和解决的行为过程。
参考文献:
[1]王积社.高等数学创新教育的诉求:走向生成[J].中国成人教育,2024,24(04):78-101.[2]刘丹.浅析《高等数学》创新型课堂教学[J].大学数学,2024,11(02):144-157.[3]杨雯靖.“高等数学”教学中数学思维与创新能力的培养[J].中国电力教育,2024,29(24):135-142.[4]王慧敏.高等数学教学提高学生数学应用能力的策略[J].西部素质教育,2024,17(15):166-180.
高等数学教学工作总结
本学期我担任本科金融专业的高等数学教学工作,一学期来,我自始至终以认真、严谨的治学态度,勤恳、坚持不懈的精神从事教学工作。作为任课教师,我能认真制定计划,注重教学理论,认真备课和教学,积极参加教研组活动和学校教研活动,上好每一节课,并能经常听各位优秀老师的课,从中吸取教学经验,取长补短,提高自己的教学的业务水平。还注意多方面、多角度去培养学生的分析能力。
现将本学期的教育教学工作总结如下:
(一)主要工作:
一、加强师德修养,提高道德素质 过去的一个学期中,我认真加强师德修养,提高道德素质。认真学习教育法律法规,严格按照有事业心、有责任心、有上进心、爱校、爱岗、爱生、团结协作、乐于奉献、勇于探索、积极进取的要求去规范自己的行为。对待学生做到:民主平等,公正合理,严格要求,耐心教导;对待同事做到:团结协作、互相尊重、友好相处;对待自己做到:严于律已、以身作则、为人师表。
二、加强教育教学理论学习
能积极投入到课改的实践探索中,认真学习,加快教育、教学方法的研究,更新教育观念,掌握教学改革的方式方法,提高了驾驭课程的能力。
三、教学工作
在教学中,我大胆探索适合于学生发展的教学方法。为了教学质量,我做了下面的工作:
1、认真备好课。
①认真学习钻研教材。了解教材的基本思想、基本概念、结构、重点与难点,掌握知识的逻辑。多方参阅各种资料,力求深入理解教材,准确把握难重点。
②了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的措施。
2、坚持坚持学生为主体,向50分钟课堂教学要质量。精心组织好课堂教学,关注全体学生,坚持学生为主体,注意信息反馈,调动学生的注意力,使其保持相对稳定性。同时,激发学生的情感,针对大一学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,注重讲练结合。在教学中注意抓住重点,突破难点。
3、认真批改作业。
在作业批改上,做到认真及时,重在订正,及时反馈。
(二)存在问题
由于我是一名年轻教师,对教材的熟悉程度以及在教学经验上还很欠缺。因此在教学过程中有时会出现一些问题。除此之外,现在注重考察的是学生应用知识的能力,但由于以前的教学模式,学生的这种能力培养还很弱,以后还需加强这方面的培养。
(三)今后努力的方向
1、加强学习,学习新的教学思想。
2、挖掘教材,进一步把握知识点和考点。
3、多听课,学习同科目教师先进的教学方法的教学理念。
4、加强转差培优力度。
5、让学生具有良好的数学思维。
一份耕耘,一份收获,教学工作苦乐相伴。在以后的教学工作中,我要不断总结经验,力求提高自己的教学水平,还要多下功夫加强对个别差生的辅导,相信一切问题都会迎刃而解,我也相信有耕耘总会有收获!
篇一:课程整体教学设计(新高数)《高等数学》课程整体设计
一、管理信息
课程名称:高等数学 课程代码:220000103 制 定 人: 张秀玲 制定时间:2024.7.20 所属部门:基础课教学部 批 准 人:
二、基本信息
学 时:60 授课对象:2024级建筑工程技术高职班
三、课程教学设计 1.教学设计理念
本着“以应用为导向,以能力为目标,理论知识以必需、够用为度”的原则,以重能力、重应用、求创新的总体思路。本课程的教学将从学生将来工作和实际生活中遇到的实际案例出发引出需要学习的内容来进行教学,从而提高学生的学习兴趣,培养学生的学习能力,为学生学习后续课程和解决实际问题提供必要的数学基础.按照教学设计的基本原理:目标控制原理、要素分析原理、优选决策原理、反馈评价原理进行本课程的设计。2.课程目标设计
本专业主要面向建筑工程施工企(事)业单位,培养在生产、服务第一线能从事建筑工程现场施工技术与管理工作,具有良好职业道德和职业生涯发展基础的高端技能型专门人才.本专业所培养的人才应具有以下知识、能力与素质:
掌握施工图绘制、识读的基本知识;熟悉工程预算的基本知识;能够进行工程量计算等与数学密切相关的知识.据此设立数学课的课程目标如下:
1.1.能力目标:利用数学知识消化、吸收工程概念和工程原理的能力;把实际问题转化为数学模型的能力;利用计算机和相应软件包求解数学模型的能力;善于归纳、类比、联想的创造性思维能力.1 1.2课程的知识目标:
理解函数、极限、连续、导数、微分、不定积分和定积分的概念;熟练掌握函数的极限、导数、积分的计算;能对函数进行连续性的判断,会求最值、切线、平面图形的面积以及旋转体的体积等.1.3课程的素质目标:
培养学生将实际问题转化为数学问题以及用所学知识去解决实际问题的能力.力求使学生在原有初等数学的基础上,学习与掌握高等数学的思想与方法.并能用高等数学的思想与方法去分析、解决实际问题,让数学成为学生解决实际问题的有力工具,更好地服务于学生后续专业课程的学习与素质的全面提高,培养面向基层、面向生产、面向管理与服务的一线高技能应用型人才.3.课程设计的步骤 3.1课程开发流程
通过专业调研,掌握专业学习所需数学知识,了解现代人的素质需求,培养数学素养和数学思维方法,重新建构出专业学习需要的、提高素质必须的高等数学的学习内容。3.2课程内容设计
把专业学习需要的、提高素质必须的高等数学的学习内容进行梳理加工,设计出五个模 2 4.《高等数学》模块设计 4.2函数极限与连续 3 4 4.4不定积分和定积分 5 篇二:318陈杨林高等数学教学设计方案
大概按照这样的格式写一下,红色的是我写的其他的有时间请补充 1 2 4 表格式教学设计模板
篇三:高等数学中《极限》的教学设计
高等数学中《极限》的教学设计
摘要:极限是高等数学的基础,这一章的教学关乎到学生之后对高等数学的学习兴趣,所以在《极限》的教学中我设计了以学生为主导,教师为辅助的学法和教法。
关键词:极限;创设;引导
中图分类号:g42文献标识码:a 文章编号:1009-0118(2024)-01-0-01 数学研究的内容是函数,无论是初、高中时期的数学,还是大学时期学习的高等数学,那么有人要问了,高等数学中所谓的“高等”是什么呢?这里是从方法说的高等数学是以“极限”为基础的,足见极限在高等数学中的重要性。
一、教材分析
极限在教材中的地位
二、教学目标
(一)知识与技能
使学生能够直观理解极限的思想,理解和掌握函数极限的严格定义,能用数学语言证明简单的极限。
(二)过程与方法
引导学生通过观察、归纳、抽象、概括,自主建构函数极限的概念 ;能运用函数极限的概念解决简单的问题;让学生领会数学的极限思想方法,培养学生发现问题、分析问题、解决问题的能力。
《高等数学》是我校高职专业重要的基础课。经过我们高等数学教师的努力,该课程在课程建设方面已走向成熟,教学质量逐步提高,在教学研究、教学管 理、教学改革方面,我们做了很多工作,也取得了可喜的成果。
《高等数学》是学习现代科学技术必不可少的基础知识。一方面它是学生后 继课程学习的铺垫,另一方面它对学生科学思维的培养和形成具有重要意义。因此,它既是一门重要的公共必修课,又是一门重要的工具课。紧扣高职高 专的培养目标,我们的《高等数学》课的定位原则是“结合专业,应用为主,够用为度,学有所用,用有所学”,宗旨是“拓宽基础、培养能力、重在应用”
根据高职高专的培养目标,高等数学这门课的教学任务是使学生在高中数学 的基础上,进一步学习和掌握本课程的基础知识、基本方法和基本技能,逐步 培养学生抽象概括问题的能力,一定的逻辑推理能力,空间想象能力,比 较熟练的运算能力和自学能力,提高学生在数学方面的素质和修养,培养 学生综合运用所学知识分析问题、解决问题的能力。
高等数学这门课的教学设计思想是:根据专业设置相应的教学内容。我们将 《高等数学》分成四大类:轻化工程、电子、计算机和财经。四大类的公共教 学内容为:一元函数微积分,微分方程。三类工科数学增加:空间解析几何、多 元微积分学。计算机和电子再增加级数。电子类专业还专门开设拉普拉氏变换。财经专业另开设线性代数初步。达到了专业课对基础课的要求。
同时,在教学内容的安排上,还注意了以下几点:
1、数学知识的覆盖面不宜太宽,应突出重点,不过分追求数学自身的系统 性,严密性和逻辑性。淡化数学证明和数学推导。
2、重视知识产生的历史背景知识介绍,激发学生的学习兴趣。每一个概念 的引入应遵循实例—抽象—概念的形成过程。
3、重视相关知识的整合。如在一元微积分部分,可将不定积分与定积分整 合,先从应用实例引入定积分的概念,再根据定积分计算的需要引入不定积分
4、强调重要数学思想方法的突出作用。强化与实际应用联系较多的基础知 识和基本方法。加强基础知识的案例教学,力求突出在解决实际问题中有重要 应用的数学思想方法的作用,揭示重要的数学概念和方法的本质。例如,在导 数中强调导数的实质——变化率;在积分中强调定积分的实质—无限累加;在 微分中强调局部线性化思想;在极值问题中强调最优化思想;在级数中强调近似计算思想。
5、注重培养学生用数学知识解决实际问题的意识与能力。
6、根据学生实际水平,有针对性地选择适当(特别是在例题、习题、应用 案例及实验题目等方面)的教学内容,应尽量淡化计算技巧(如求导和求积分 技巧等)。
知识模块顺序及对应的学时《高等数学》工科课程主要分为七部分的知识模 块,共需要用168个学时.1、一元函数微分学部分(极限、导数及其应用),需用60个学时;
2、一元函数积分学部分(不定积分、定积分及其应用),需用30个学时;
3、微分方程部分,需用12个学时。
4、向量代数与空间解析几何部分,需用24个学时;
5、多元函数微分学部分(偏导数及其应用),需用22个学时;
6、多元函数积分学部分(二重积分及其应用),需用8个学时;
7、无穷级数部分,需用30个学时; 课程的重点、难点及解决办法 1、课程的重点
本课程的研究对象是函数,而研究问题的根本方法是极限方法,极限方法贯 穿于整个课程。本课程的重点是教会学生在掌握必要的数学知识(如导数与 微分、定积分与重积分及级数理论等)的同时,培养学生应用数学的思想方 法解决实际问题的意识、兴趣和创新能力。
2、课程的难点
本课程的教学难点在于由实际问题抽象出有关概念和其中所蕴涵的数学思想,培养学生应用数学的思想方法解决实际问题的意识、兴趣和能力;一元函数 的极限定义并用定义证明极限、定积分的应用、多元复合抽象函数的求偏导,根据实际问题建立微分方程等内容是高等数学学习过程中的难点。
3、解决办法
对于工科类高等数学,讲授时一般以物理、力学和工程中的数学模型为背景 引出问题,采取启发式教学以及现代化教学手段,讲清思想,加强基础;注 意连续和离散的关系,加强函数的离散化处理,注意培养学生研究问题和解 决实际问题的能力;注意教学内容与建立数学模型之间的联系。在微积分学 的应用中,更是关注物理模型的建立和研究思想。另外,重点、难点内容多 配备题目,课堂讲解通过典型例题的分析过程和解决过程掌握重点、突破难 点;课外还布置一定量的练习题;最近几年以来,基础部学科建设发展迅速,研究成果和学术论文突飞猛进,学术环境和氛围极大改善。基础部科研和教 学活动的新的水平层次,为《高等数学》精品课程的建设和发展,提供了优 秀的学术环境和平台。
教 学 大 纲
一、内容简介
本课程的内容包括函数的极限与连续,微分及其应用,积分及其应用,常微分方程,空间解析几何与向量代数、多元函数微积分及其应用,无穷级数,线性代数初步,数学实验等。其中函数的极限与连续,微分及其应用,积分及其应用为各专业的基础部分。空间解析几何与向量代数、多元函数微积分及其应用,无穷级数,线性代数初步,数学实验为选学模块,各专业可根据专业培养目标的要求,选学相应的教学内容。
二、课程的目的和任务
为培养能适应二十一世纪产业技术不断提升和社会经济迅速发展的高等技术应用型人才,教学中本着重能力、重应用、求创新的思路,切实贯彻“以应用为目的、理论知识以必需、够用为度”的原则,落实高职高专教育“基础知识适度,技术应用能力强,知识面较宽,素质高”的培养目标,从根本上反映出高职高专数学教学的基本特征,反映出目前国内外知识更新和科技发展的最近动态,将工程技术领域的新知识、新技术、新内容、新工艺、新案例及时反映到教学中来,充分体现高职教育专业设置紧密联系生产、建设、服务、管理一线的实际要求。在教学内容的组织上,注意以下几点:
1.注意数学知识的深、广度。基础知识和基本理论以“必需、够用”为度.把重点放在概念、方法和结论的实际应用上。多用图形、图表表达信息,多用有实际应用价值的案例、示例促进对概念、方法的理解。对基础理论不做论证,必要时只作简单的几何解释。
2.必须贯彻“理解概念、强化应用”的教学原则。理解概念要落实到用数学思想及数学概念消化、吸纳工程技术原理上;强化应用要落实到使学生能方便地用所学数学方法求解数学模型上。
3.采用“案例驱动”的教学模式。由实际问题引出数学知识,再将数学知识应用于处理各种生活和工程实际问题。重视数学知识的引入,激发学生的学习兴趣。每一个概念的引入应遵循实例—抽象—概念的形成过程。
4.重视相关知识的整合。如在一元微积分部分,可将不定积分与定积分整合,先从应用实例引入定积分的概念,再根据定积分计算的需要引入不定积分。
5.要特别注意与实际应用联系较多的基础知识、基本方法和基本技能的训练,但不追求过分复杂的计算和变换。可通过数学实验教学,提升学生对的数学问题的求解能力。加强基础知识的案例教学,力求突出在解决实际问题中有重要应用的数学思想和方法的作用,揭示重要的数学概念和方法的本质。例如,在导数中强调导数的实质——变化率;在积分中强调定积分的实质—无限累加;在微分中强调局部线性化思想;在极值问题中强调最优化思想;在级数中强调近似计算思想。
6.在内容处理上要兼顾对学生抽象概括能力、自学能力、以及较熟练的综合运用所学知识分析问题、解决问题的能力以及创新能力的培养.真正体现以学生为主体,以教师为主导的辨证统一。
三、课程内容
第一章 函数的极限与连续
理解一元函数的概念及其表示;了解分段函数;了解复合函数的概念,会分析复合函数的复合过程。熟悉基本初等函数及其图形;能熟练列出简单问题中的函数关系;理解数列极限与函数极限的概念;会用极限思想方法分析简单问题;了解函数左、右极限的概念,以及函数左、右极限与函数极限的关系;掌握极限四则运算法则;理解函数连续、间断的概念;知道初等函数的连续性;会讨论分段函数的连续性。第二章 一元函数微分学及其应用
理解导数和微分的概念;能用导数描述一些经济、工程或物理量;熟悉导数和微分的运算法则和导数的基本公式;了解高阶导数的概念;能熟练地求初等函数的导数,会求一些简单函数的高阶导数,会用微分做近似计算;会建立简单的微分模型。第三章
导数的应用
会用罗必达解决未定型极限;理解函数的极值概念;会求函数的极值,会判断函数的单调性和函数图形的凹、凸性等;熟练掌握最大、最小值的应用题的求解方法。第四章
一元函数积分学及其应用
理解不定积分和定积分的概念;了解不定积分和定积分的性质;理解定积分的几何意义;熟悉不定积分的基本公式;掌握不定积分的直接积分法、第一类换元法和常见类型的分部积分法;熟练掌握牛(Newton)-莱布尼兹(Leibniz)公式;熟练掌握定积分的微元法,能建立一些实际问题的积分模型;会用微元分析法建立简单的积分模型;了解广义积分的概念.了解微分方程的阶、解、通解、初始条件、特解等概念;掌握可分离变量微分方程及一阶线性微分方程的解法;掌握二阶常系数齐次线性微分方程的解法;会建立简单的微分方程模型。第五章
空间解析几何与向量代数
理解向量的概念,掌握向量的线性运算、点乘、叉乘,两个向量垂直、平行的条件;熟悉单位向量、方向余弦及向量的坐标表达式;掌握用坐标表达式进行向量运算;理解曲面方程的概念,熟悉平面方程和直线方程及其求法;了解常用的二次曲面的方程,了解以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程;了解曲线在坐标平面上的投影。第六章
多元函数微分法及其应用 理解多元函数的概念;了解二元函数的极限与连续性概念及有界闭域上连续函数的性质;了解偏导数和全微分的概念,了解全微分存在的必要条件和充分条件;掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数;会求隐函数的偏导数;理解多元函数极值和条件极值的概念,会求一些极值。第七章
二重积分
理解二重积分的概念,了解重积分的性质和几何意义;掌握二重积分的计算方法。第八章
无穷级数
了解无穷级数收敛、发散及和的概念,基本性质及收敛的必要条件;掌握几何级数和P-级数的收敛性;掌握正项级数的比较审敛法,比值审敛法;了解交错级数的莱布尼兹定理;了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;了解函数项级数的收敛域及和函数的概念;掌握比较简单的幂级数收敛区间的求法;了解幂级数在其收敛区间内的一些基本性质;了解函数展开为泰勒级数的充要条件;会将一些简单的函数间接展开成幂级数。了解函数展开为傅里叶级数的狄利克雷条件,会将定义在(-π,π)上的函数展开为傅里叶级数,并会将在(0,π)上的函数展开为正弦或余弦级数。知道傅里叶级数在工程技术中的应用。了解拉普拉斯变换和逆变换的概念,会求解简单信号函数的拉普拉斯变换和逆变换。第九章 线性代数初步
理解矩阵的概念;掌握用矩阵表示实际量的方法;熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律;熟练掌握矩阵的初等变换;理解逆矩阵的概念,会用矩阵的初等变换求方阵的逆矩阵。会建立简单的线性模型;熟练掌握用行初等变换求线性方程组通解的方法。第十章 数学实验
数学实验是以实际问题为实验对象的操作实验,其教学不仅让学生了解和掌握一种数学实验软件,而更重要的是培养学生运用数学知识分析和解决问题的能力。
四、课程的教学方式
本课程的特点是思想性强,与相关基础课及专业课联系较多,教学中应注重由案例启发进入相关知识,并突出帮助学生理解重要概念的思想本质,避免学生死记硬背。要善于将有关学科或生活中常遇到的名词概念与微积分学的概念结合起来,使学生体会到数学学习的必要性。同时,注重各教学环节(理论教学、习题课、作业、辅导参考)的有机联系, 特别是强化作业与辅导环节,使学生加深对课堂教学内容的理解,提高分析解决问题的能力和运算能力。教学中有计划有目的地向学生介绍学习数学与学习专业课之间的关系,学习数学是获取进一步学习机会的关键学科。
五、各教学环节学时分配
序号教学模块理论课时习题课时实 验共计备注
1函数的极限与连续166 22各专业的公共基础 2 导数与微分204 24 3导数的应用104 14 4一元函数积分及其应用228 30
常微分方程102 12轻化、电子、计算机、经济类学生选
5空间解析几何与向量代数186 24轻化、电子、计算机类学生选 6多元函数微积分及其应用166 22轻化、电子、计算机类学生选
7二重积分62 8 8无穷级数246 30电子、计算机类学生选
9线性代数初步144 18电子、计算机、经济类学生选 10 实验
六、执行大纲时应注意的问题
1.大纲以高职高专各专业为实施对象。
2.模具和高分子专业增加极坐标和曲率;电子专业增加拉普拉斯变换。3.数学实验课程视情况开设。
教学效果
高等数学课程是一门十分繁重的教学任务,不仅学时多、面对学生人数多,而且责任大。学校、系、学生都十分关注这门课程的教学质量,它涉及到后续课程的教学,特别是它影响培养人才的质量和水平。基础部历来非常重视高等数学的教学质量,积极组织教师开展教学研究,要求任课教师认真负责地对待教学工作,备好、讲好每一节课。多年来高等数学的教学质量和教学水平一直受到学校和学生的好评。
从课堂表现可以看出教师备课是充分的。讲授熟练,概念清楚,重点突出。特别是贯彻启发式教学,教与学互动,课堂提问讨论,学生课堂解题等,师生配合较好,课堂气氛活跃,调动了学生的学习积极性。教师们经常讨论各章节的重点难点应如何处理,如何分析引出概念,如何贯彻启发式教学,哪些问题要留给学生自己解决。这种教学研讨一学期要有十多次,有时几乎每周都有安排。严谨治学、严格要求、教书育人、为人师表是基础部的优良传统,可以说高等数学教研室在师资队伍建设上成绩是突出的。高等数学在教学改革上,准备将数学建模和数学实验引入高等数学教学中,从而来提高学生学习兴趣,尝到数学应用的益处,提高学数学的积极性
课程的方法和手段
本课程运用现代教育技术、采用多种教学手段相结合的方式。大多数教师在教学中使用powerpoint课件、电子教案、模型教具等辅助手段,使教学内容的表达更生动、直观,有效提高了教学效果。采用多媒体辅助教学的教师比例达到100%。具体情况如下:
1.坚持“少讲、留疑、迫思、细答、深析”的教学原则,试点“讨论式”、“联想式”、“逆反式”等教学方法。
高等数学是学生进入大学后首先学习的课程之一,内容难以理解,课堂教学容量大。如何培养学生独立学习的能力,也是教师义不容辞的责任。为转变学生中学养成的依赖教师的学习习惯,尽快适应大学学习生活,我们在教学中提出“少讲、留疑、迫思、细答,深析”的教学 原则,开展了“讨论式”、“联想式”、“逆反式”等教学方法,收到了较好的效果。
2.提倡研究式学习方法,培养学生初步进行科学研究的能力和创新精神
工科学生学习数学的主要目的,是能将所学数学知识用于专业研究中。为激发学生的求知欲、锻炼学生的初步研究能力、培养学生的综合素质与创新精神,我们尝试在部分班级开展研究式的学习方法。具体方法是:将部分教学内容改造成研究问题,让学生通过课程学习、查阅资料、相互讨论等形式思考研究问题。例如针对微分方程的应用、各种定积分的比较研究等问题开展这项活动,学生反映很好。
3.传统教学手段与现代教学手段结合,提高教学效果
在部分内容保留传统教学方式的基础上,积极运用现代教育技术,探索计算机辅助教学的模式,研制电子教案,并在部分班级进行试点。例如:我们利用电子教案讲授空间解析几何、重积分等内容,使一些空间图形的演示更直观、更清楚,便于学生理解和掌握。
4.加强课下辅导,及时为学生排疑解难
课下的辅导答疑是高等数学教学的重要环节,为加强这个环节,我们安排了正常的辅导答疑。
5.积极开展课外科技活动
为配合高等数学的教学工作,我们准备开设《Mathematica》和《数学建模》两门院级选修课,为基础较好的学生提供进一步提高的机会。同时,积极组织学生参加数学建模竞赛。
§13.2 多元函数的极限和连续
一 多元函数的概念
不论在数学的理论问题中还是在实际问题中,许多量的变化,不只由一个因素决定,而是由多个因素决定。例如平行四边行的面积A由它的相邻两边的长x和宽y以及夹角所确定,即Axysin;圆柱体体积V由底半径r和高h所决定,即Vr2h。这些都是多元函数的例子。
一般地,有下面定义:
定义1: 设E是R2的一个子集,R是实数集,f是一个规律,如果对E中的每一点(x,y),通过规律f,在R中有唯一的一个u与此对应,则称f是定义在E上的一个二元函数,它在点(x,y)的函数值是u,并记此值为f(x,y),即uf(x,y)。
有时,二元函数可以用空间的一块曲面表示出来,这为研究问题提供了直观想象。例如,二元函数xRxy222就是一个上半球面,球心在原点,半径为R,此函数定义域为满足关系式x2y2R2的x,y全体,即D{(x,y)|x2y2R2}。又如,Zxy是马鞍面。
二 多元函数的极限
定义2
设E是R2的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0rM,M0时,有f(M)A,就称A是二元函数在M0点的极限。记为limfMMM0A或fMAMM0。
定义的等价叙述1 :设E是R2的一个开集,A是一个常数,二元函数fM在点0f(x,y)M02x,0y02E近有定义.如果0附,0,当xx0yy0时,有f(x,y)A,就称A是二元函数在M0点的极
龙岩学院数计院
限。记为limfMMM0A或fMAMM0。
定义的等价叙述2: 设E是R2的一个开集,A是一个常数,二元函数fM在点M0x,0y0f(x,y)附E近有定义.如果0,0,当0xx0,0yy0且x,yx0,y0时,有f(x,y)A,就称A是二元函数在M0点的极限。记为limfMMM0A或fMAMM0。
注:(1)和一元函数的情形一样,如果limf(M)A,则当M以任何点列及任何方式趋
MM0于M0时,f(M)的极限是A;反之,M以任何方式及任何点列趋于M0时,f(M)的极限是A。但若M在某一点列或沿某一曲线M0时,f(M)的极限为A,还不能肯定f(M)在M0的极限是A。所以说,这里的“”或“”要比一元函数的情形复杂得多,下面举例说明。
例1:设二元函数f(x,y)xyxyxyxy22222,讨论在点(0,0)的的二重极限。
例2:设二元函数f(x,y)2,讨论在点(0,0)的二重极限是否存在。
0,例3:f(x,y)1,xy其它或y0,讨论该函数的二重极限是否存在。
二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂。
例4:limxyxxyysinxyx22。
xy例5:① limx0y0
② lim(xy)ln(xy)③ lim(xy)ex0y0xy2222222(xy)
例6:求f(x,y)xy3223xy在(0,0)点的极限,若用极坐标替换则为limrr0cossincossin33220?
龙岩学院数计院
(注意:cos3sin3在74时为0,此时无界)。
xyxy222例7:(极坐标法再举例):设二元函数f(x,y)证明二元极限不存在的方法.,讨论在点(0,0)的二重极限.
基本思想:根据重极限定义,若重极限存在,则它沿任何路径的极限都应存在且相等,故若1)某个特殊路径的极限不存在;或2)某两个特殊路径的极限不等;3)或用极坐标法,说明极限与辐角有关.
例8:f(x,y)xyxy22在(0,0)的二重极限不存在.
三
二元函数的连续性
定义3
设fM在M0点有定义,如果limf(M)f(M0),则称fMMM0在M0点连续.
0,0,当0 如果f在开集E内每一点连续,则称f在E内连续,或称f是E内的连续函数。 例9:求函数utanx2y2的不连续点。 四 有界闭区域上连续函数的性质 有界性定理: 若fx,y再有界闭区域D上连续,则它在D上有界。一致连续性定理: 若fx,y再有界闭区域D上连续,则它在D上一致连续。最大值最小值定理: 若fx,y再有界闭区域D上连续,则它在D上必有最大值和最小值。 零点存在定理: 设D是Rn中的一个区域,P0和P1是D内任意两点,f是D内的连续函数,如果f(P0)0,f(P1)0,则在D内任何一条连结P0,P1的折线上,至少存在一点Ps,使f(Ps)0。 龙岩学院数计院 五 二重极限和二次极限 在极限limf(x,y)中,两个自变量同时以任何方式趋于x0,y0,这种极限也叫做重xx0yy0极限(二重极限).此外,我们还要讨论当x,y先后相继地趋于x0与y0时f(x,y)的极限.这种极限称为累次极限(二次极限),其定义如下: 若对任一固定的y,当xx0时,f(x,y)的极限存在:limf(x,y)(y),而(y)xx0在yy0时的极限也存在并等于A,亦即lim(y)A,那么称A为f(x,y)先对x,再 yy0对y的二次极限,记为limlimf(x,y)A. yy0xx0同样可定义先y后x的二次极限:limlimf(x,y). xx0yy0上述两类极限统称为累次极限。 注:二次极限(累次极限)与二重极限(重极限)没有什么必然的联系。例10:(二重极限存在,但两个二次极限不存在).设 11xsinysinyxf(x,y) 0x0,y0x0ory0 由f(x,y)xy 得limf(x,y)0(两边夹);由limsinx0y01y不存在知f(x,y)的累次 y0极限不存在。 例11:(两个二次极限存在且相等,但二重极限不存在)。设 f(x,y)xyxy22,(x,y)(0,0) 由limlimf(x,y)limlimf(x,y)0知两个二次极限存在且相等。但由前面知x0y0y0x0limf(x,y)不存在。 x0y0例12:(两个二次极限存在,但不相等)。设 f(x,y)xyxy2222,(x,y)(0,0) 龙岩学院数计院 则 limlimf(x,y)1,limlimf(x,y)1;limlimf(x,y)limlimf(x,y)(不x0y0y0x0x0y0y0x0可交换) 上面诸例说明:二次极限存在与否和二重极限存在与否,二者之间没有一定的关系。但在某些条件下,它们之间会有一些联系。 定理1:设(1)二重极限limf(x,y)A;(2)y,yy0,limf(x,y)(y).则 xx0yy0xx0yy0lim(y)limlimf(x,y)A。 yy0xx0(定理1说明:在重极限与一个累次极限都存在时,它们必相等。但并不意味着另一累次极限存在)。 推论1: 设(1)limf(x,y)A;(2)(3)y,yy0,limf(x,y)存在;x,xx0,xx0yy0xx0yy0limf(x,y)存在;则limlimf(x,y),limlimf(x,y)都存在,并且等于二重极限yy0xx0xx0yy0xx0yy0limf(x,y)。 推论2: 若累次极限limlimf(x,y)与limlimf(x,y)存在但不相等,则重极限 xx0yy0yy0xx0xx0yy0limf(x,y)必不存在(可用于否定重极限的存在性)。 222例13:求函数fx,yxy22xyxy在0,0的二次极限和二重极限。 龙岩学院数计院
Copyright © wanshu.net All Rights Reserved.版权所有
本网站内容仅供参考,内容侵权或错误投诉:640661@qq.com
工信部备案号:鲁ICP备2020038323号-1