工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 范文大全 > 二号文库

小学生数学竞赛讲义

最新文章

第一篇:小学生数学竞赛讲义

小学生数学竞赛

上海市小学生竞赛简介

1、小机灵杯 

2、中环杯 

3、走美杯 

4、华罗庚杯 

5、希望杯 小机灵杯

 小机灵杯介绍:

 小机灵杯,是一项难度比较高的思维能力竞赛,从某种程度上来说难度较大,与中环杯相比,题目难度更深,但是灵活性没有中环杯大,中环杯的题目更具独创性,尤其是最后的图形的切拼割,更是考察学生的数学思维能力。小机灵杯的考试的题型来说,相对比较集中不零散,历年题目的类型都不会怎么改变,都是填空题型,不会对图形的切拼割进行考察。小机灵杯的复习主要还是分板块进行,不宜过高的难度,也不能太简单,主要还是要学生自己能够比较好的举一反三。

 竞赛特色:小机灵杯考试从某种程度上来说难度较大,与中环杯相比,题目难度更深,但是灵活性没有中环杯大。

 参加对象:全市各小学三至五年级学生;分三年级、四年级、五年级三个组别。

 赛程时间:初赛:每年12月;决赛:每年2月。

中环杯

 中环杯介绍

中环杯是一项难度较大的中小学数学竞赛,在江浙和上海受到广泛认可。分为初赛和复赛两个阶段,初赛主要考察奥数水平,复赛考察动手能力和思维能力等综合实力。

 参赛人群:小学四年级~中学八年级,爱好科学、数学的学生。

 竞赛时间:区选拔赛: 12月左右(四、五年级)

 市决赛: 3月左右 希望杯

 希望杯

这一邀请赛自1990年以来,已经连续举行了二一届。21年来,主办单位始终坚持比赛面向多数学校、多数学生,从命题、评奖到组织工作的每个环节,都围绕着一个宗旨:激发广大中学生学习的兴趣,培养他们的自信,不断提高他们的能力和素质。希望杯不涉及初

三、高三,不与奥赛重复。其他杯赛介绍

 走美杯:走进美妙的数学花园比赛的简称。

 “走美”始创于2025年(第一届没有笔试,仅仅是活动),现在已举行过7届,“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”

一、二等奖对小升初作用非常大,三等奖作用不大。

 华罗庚杯:

 “华罗庚金杯”少年数学邀请赛(简称“华杯赛”)是以“华罗庚”名字命名的数学竞赛。始于1986年是纪念我国著名数学家华罗庚始创的,“华杯”数学竞赛活动至2025年以有16届。

竞赛时间安排及顺序

 小机灵杯

 2月28号左右  走美杯

 3月7号左右  中环杯  3月20日  华杯赛  4月10日  希望杯  4月11日 各杯赛常考问题

 数字问题:包括奇数偶数问题、整除余数问题、质(素)数问题、数列等问题等。 逻辑推理问题:包括数阵问题、说谎问题、逻辑判断问题等。

 应用问题:路程问题、行船问题、过桥问题、盈亏问题、牛吃草问题鸡兔同笼问题等。

 几何问题:数图形个数问题、周长面积问题、立体图形问题、图形切割问题等。 其他问题:时钟问题、定义新运算问题、十进制和二进制问题、抽屉原理、分类讨论问题等。

各杯赛试题分析:

 关于流水问题:  甲、乙两个景点相距15千米,一艘观光游船从甲景点出发,抵达乙景点后立即返回,共用了3个小时。已知第三小时比第一小时少行了12千米,那么这条河的水流速度为每小时多少千米?(五年级试题) 逻辑推理问题:

 例:四对夫妻,分为四组进行围棋比赛,设A、B、C、D为男士,E、F、G、H为女士,如果比赛的对决有下面的描述:B对H,A对C的妻子,E对F的丈夫,D对A的妻子,F对H的丈夫。那么B的妻子是谁?(五年级试题) 数字运算问题:

 例:如果6*2=6+7,5*3=5+6+7,4*4=4+5+6+7,…...,那么5*5+6*5+……+10*5等于多少?(四年级试题)

 余数问题:

 例:求4321×3275+2983-19×876除以17的余数(五年级试题) 数列问题:

 例:.小青虫由幼虫长成成虫,每天长大一倍,20能长到32cm。问长到4cm时要用几天?(三年级试题) 应用问题:

 例:.乙丙三组工人参加锯圆木劳动,他们领取的分别是4米、3米和2米长的圆木,要求把这3中木材都锯成长为1米的木断,已知每组工人将一根木材锯成两段所需 

    的时间是6分钟,且甲乙丙3组最后分别锯出了28段、27段、34段,那么工作量最少的的一组共锯木多少分钟?(三年级试题)火车问题:

例:两列火车相向而行,甲车每小时行50千米,乙车每小时行58千米,两车交错时,甲车上一乘客从看见乙车的车头到车尾一共经过10秒钟,乙车全长为几米?(四年级试题)时钟问题:

例:8点——分的时候,分针与时针第一次形成75°角。(五年级试题)几何问题:

例题:下图是五个同样大小的小长方形(单位:厘米),则一个小长方形的面积是多少平方厘米?(四年级试题)

 总结:各杯赛其实是课本知识的一个延伸和拓展,参加杯赛能够使学生的思维开阔。杯赛题目难度相对较大,但是每种类型的题目都有其比较固定的方法,在学习时需要学生多加积累和总计,这些方法不仅仅用在参加竞赛上面,在以后的学习中很多地方都可以应用。

第二篇:数学竞赛教案讲义——数列

第五章 数列

一、基础知识

定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,….数列分有穷数列和无穷数列两种,数列{an}的一般形式通常记作a1, a2, a3,…,an或a1, a2, a3,…,an…。其中a1叫做数列的首项,an是关于n的具体表达式,称为数列的通项。

定理1 若Sn表示{an}的前n项和,则S1=a1, 当n>1时,an=Sn-Sn-1.w.w.w.k.s.5.u.c.o.m 定义2 等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:Sn=n(a1an)n(n1)na1d;3)an-am=(n-m)d,其中n, m为正整数;4)若n+m=p+q,22则an+am=ap+aq;5)对任意正整数p, q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{an}是等差数列的充要条件是Sn=An2+Bn.定义3 等比数列,若对任意的正整数n,都有

an1q,则{an}称为等比数列,q叫做公比。ana1(1qn)定理3 等比数列的性质:1)an=a1q;2)前n项和Sn,当q1时,Sn=;当

1qn-1q=1时,Sn=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则aman=apaq。

定义4 极限,给定数列{an}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|an-A|<,则称A为n→+∞时数列{an}的极限,记作limanA.n定义5 无穷递缩等比数列,若等比数列{an}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和Sn的极限(即其所有项的和)为

a1(由极限的定义可得)。1q定理3 第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。

竞赛常用定理 定理4 第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。

定理5 对于齐次二阶线性递归数列xn=axn-1+bxn-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则xn=c1an-1+c2βxn=(c1n+c2)αn-

1n-1,其中c1, c2由初始条件x1, x2的值确定;(2)若α=β,则,其中c1, c2的值由x1, x2的值确定。

二、方法与例题 1.不完全归纳法。

这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。

例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。

例2 已知数列{an}满足a1=

例3 设0

2迭代法。

数列的通项an或前n项和Sn中的n通常是对任意n∈N成立,因此可将其中的n换成n+

11,a1+a2+…+an=n2an, n≥1,求通项an.21,求证:对任意n∈N+,有an>1.an或n-1等,这种办法通常称迭代或递推。

例4 数列{an}满足an+pan-1+qan-2=0, n≥3,q0,求证:存在常数c,使得22nan1pan1·an+qancq0.2例5 已知a1=0, an+1=5an+24an1,求证:an都是整数,n∈N+.3.数列求和法。

数列求和法主要有倒写相加、裂项求和法、错项相消法等。例6 已知an=

例7 求和:Sn

例8 已知数列{an}满足a1=a2=1,an+2=an+1+an, Sn为数列

4.特征方程法。

例9 已知数列{an}满足a1=3, a2=6, an+2=4n+1-4an,求an.1(n=1, 2, …),求S99=a1+a2+…+a99.4n2100111+…+.n(n1)(n2)123234an的前n项和,求证:Sn<2。n2

例10 已知数列{an}满足a1=3, a2=6, an+2=2an+1+3an,求通项an.5.构造等差或等比数列。

例11 正数列a0,a1,…,an,…满足anan2

2xn2例12

已知数列{xn}满足x1=2, xn+1=,n∈N+, 求通项。

2xnan1an2=2an-1(n≥2)且a0=a1=1,求通项。

三、基础训练题

1. 数列{xn}满足x1=2, xn+1=Sn+(n+1),其中Sn为{xn}前n项和,当n≥2时,xn=_________.2.数列{xn}满足x1=

2xn1,xn+1=,则{xn}的通项xn=_________.3xn223.数列{xn}满足x1=1,xn=

1xn1+2n-1(n≥2),则{xn}的通项xn=_________.24.等差数列{an}满足3a8=5a13,且a1>0, Sn为前n项之和,则当Sn最大时,n=_________.5.等比数列{an}前n项之和记为Sn,若S10=10,S30=70,则S40=_________.6.数列{xn}满足xn+1=xn-xn-1(n≥2),x1=a, x2=b, Sn=x1+x2+…+ xn,则S100=_________.7.数列{an}中,Sn=a1+a2+…+an=n2-4n+1则|a1|+|a2|+…+|a10|=_________.8.若

x3xnx1x2,并且x1+x2+…+ xn=8,则x1=_________.x11x23x35xn2n1Sna2n,则limn=_________.nb3n1Tnn9.等差数列{an},{bn}的前n项和分别为Sn和Tn,若

2007n2n110.若n!=n(n-1)…2·1, 则(1)=_________.n!n1n11.若{an}是无穷等比数列,an为正整数,且满足a5+a6=48, log2a2·log2a3+ log2a2·log2a5+ log2a2·log2a6+ log2a5·log2a6=36,求1的通项。ann12.已知数列{an}是公差不为零的等差数列,数列{ab}是公比为q的等比数列,且b1=1, b2=5, b3=17, 求:(1)q的值;(2)数列{bn}的前n项和Sn。

四、高考水平训练题

1x21.已知函数f(x)=2x1x1则a2006=_____________.1x271+

x1,若数列{an}满足a1=,an+1=f(an)(n∈N),32(x1)2.已知数列{an}满足a1=1, an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项an=1(n1)(n2).3.若an=n2+n, 且{an}是递增数列,则实数的取值范围是__________.4.设正项等比数列{an}的首项a1=an=_____________.1, 前n项和为Sn, 且210S30-(210+1)S20+S10=0,则23n15.已知limn1,则a的取值范围是______________.n3(a1)n36.数列{an}满足an+1=3an+n(n ∈N+),存在_________个a1值,使{an}成等差数列;存在________个a1值,使{an}成等比数列。7.已知ann401n402(n ∈N+),则在数列{an}的前50项中,最大项与最小项分别是____________.8.有4个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和中16,第二个数与第三个数的和是12,则这四个数分别为____________.9.设{an}是由正数组成的数列,对于所有自然数n, an与2的等差中项等于Sn与2的等比中项,则an=____________.10.在公比大于1的等比数列中,最多连续有__________项是在100与1000之间的整数.11.已知数列{an}中,an0,求证:数列{an}成等差数列的充要条件是

11111(n≥2)①恒成立。a1a2a2a3a3a4anan1a1an112.已知数列{an}和{bn}中有an=an-1bn, bn=

bn1(n≥2), 当a1=p, b1=q(p>0, q>0)且p+q=1时,21an1an;(3)求数列limbn.nan1(1)求证:an>0, bn>0且an+bn=1(n∈N);(2)求证:an+1=13.是否存在常数a, b, c,使题设等式 1·22+2·32+…+n·(n+1)2=

n(n1)

2(an+bn+c)12对于一切自然数n都成立?证明你的结论。

五、联赛一试水平训练题

1.设等差数列的首项及公差均为非负整数,项数不少于3,且各项和为972,这样的数列共有_________个。2.设数列{xn}满足x1=1, xn=

4xn12,则通项xn=__________.2xn17253.设数列{an}满足a1=3, an>0,且3anan1,则通项an=__________.4.已知数列a0, a1, a2, …, an, …满足关系式(3-an+1)·(6+an)=18,且a0=3,则ai0n1i=__________.5.等比数列a+log23, a+log43, a+log83的公比为=__________.6.各项均为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有__________项.7.数列{an}满足a1=2, a2=6, 且

an2an=2,则

an11lima1a2ann2n________.8.数列{an} 称为等差比数列,当且仅当此数列满足a0=0, {an+1-qan}构成公比为q的等比数列,q称为此等差比数列的差比。那么,由100以内的自然数构成等差比数列而差比大于1时,项数最多有__________项.an9.设h∈N+,数列{an}定义为:a0=1, an+1=2ahn在大于0的整数n,使得an=1?

an为偶数an为奇数。问:对于怎样的h,存10.设{ak}k≥1为一非负整数列,且对任意k≥1,满足ak≥a2k+a2k+1,(1)求证:对任意正整数n,数列中存在n个连续项为0;(2)求出一个满足以上条件,且其存在无限个非零项的数列。

11.求证:存在唯一的正整数数列a1,a2,…,使得 a1=1, a2>1, an+1(an+1-1)=

anan23anan2111.六、联赛二试水平训练题

1.设an为下述自然数N的个数:N的各位数字之和为n且每位数字只能取1,3或4,求证:a2n是完全平方数,这里n=1, 2,….2.设a1, a2,…, an表示整数1,2,…,n的任一排列,f(n)是这些排列中满足如下性质的排列数目:①a1=1;②|ai-ai+1|≤2, i=1,2,…,n-1。试问f(2025)能否被3整除?

3.设数列{an}和{bn}满足a0=1,b0=0,且

an17an6bn3, bn18an7bn4,n0,1,2,.求证:an(n=0,1,2,…)是完全平方数。

4.无穷正实数数列{xn}具有以下性质:x0=1,xi+1

x1x2xn均成立;

22x0xnx121<4对任一n均成立。(2)寻求这样的一个数列使不等式

x1x2xn5.设x1,x2,…,xn是各项都不大于M的正整数序列且满足xk=|xk-1-xk-2|(k=3,4,…,n)①.试问这样的序列最多有多少项?

2(12an2)an116.设a1=a2=,且当n=3,4,5,…时,an=, 222an14an2an1an23(ⅰ)求数列{an}的通项公式;(ⅱ)求证:

12是整数的平方。an7.整数列u0,u1,u2,u3,…满足u0=1,且对每个正整数n, un+1un-1=kuu,这里k是某个固定的正整数。如果u2000=2025,求k的所有可能的值。

8.求证:存在无穷有界数列{xn},使得对任何不同的m, k,有|xm-xk|≥

1.mk9.已知n个正整数a0,a1,…,an和实数q,其中0

第三篇:数学竞赛教案讲义——数列

高考资源网(www.feisuxs),您身边的高考专家

第五章 数列

一、基础知识

定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,….数列分有穷数列和无穷数列两种,数列{an}的一般形式通常记作a1, a2, a3,…,an或a1, a2, a3,…,an…。其中a1叫做数列的首项,an是关于n的具体表达式,称为数列的通项。

定理1 若Sn表示{an}的前n项和,则S1=a1, 当n>1时,an=Sn-Sn-1.w.w.w.k.s.5.u.c.o.m 定义2 等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:Sn=n(a1an)n(n1)na1d;3)an-am=(n-m)d,其中n, m为正整数;4)若n+m=p+q,22则an+am=ap+aq;5)对任意正整数p, q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{an}是等差数列的充要条件是Sn=An2+Bn.定义3 等比数列,若对任意的正整数n,都有

an1 q,则{an}称为等比数列,q叫做公比。

ana1(1qn)定理3 等比数列的性质:1)an=a1q;2)前n项和Sn,当q1时,Sn=;当

1qn-1q=1时,Sn=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则aman=apaq。

定义4 极限,给定数列{an}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|an-A|<,则称A为n→+∞时数列{an}的极限,记作limanA.n定义5 无穷递缩等比数列,若等比数列{an}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和Sn的极限(即其所有项的和)为

a1(由极限的定义可得)。1q定理3 第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。

竞赛常用定理

欢迎广大教师踊跃来稿,稿酬丰厚。www.feisuxs 高考资源网(www.feisuxs),您身边的高考专家

定理4 第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。

定理5 对于齐次二阶线性递归数列xn=axn-1+bxn-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则xn=c1an-1+c2βxn=(c1n+c2)αn-

1n-1,其中c1, c2由初始条件x1, x2的值确定;(2)若α=β,则,其中c1, c2的值由x1, x2的值确定。

二、方法与例题 1.不完全归纳法。

这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。

例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。

例2 已知数列{an}满足a1=

例3 设0

2迭代法。

数列的通项an或前n项和Sn中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或欢迎广大教师踊跃来稿,稿酬丰厚。www.feisuxs 1,a1+a2+…+an=n2an, n≥1,求通项an.21,求证:对任意n∈N+,有an>1.an高考资源网(www.feisuxs),您身边的高考专家

n-1等,这种办法通常称迭代或递推。

例4 数列{an}满足an+pan-1+qan-2=0, n≥3,q0,求证:存在常数c,使得2n2an1pan1·an+qancq0.例5 已知a1=0, an+1=5an+24an1,求证:an都是整数,n∈N+.3.数列求和法。

数列求和法主要有倒写相加、裂项求和法、错项相消法等。例6 已知an=

例7 求和:Sn

例8 已知数列{an}满足a1=a2=1,an+2=an+1+an, Sn为数列

4.特征方程法。

例9 已知数列{an}满足a1=3, a2=6, an+2=4n+1-4an,求an.欢迎广大教师踊跃来稿,稿酬丰厚。www.feisuxs 21(n=1, 2, …),求S99=a1+a2+…+a99.4n2100111.+…+123234n(n1)(n2)an的前n项和,求证:Sn<2。n2高考资源网(www.feisuxs),您身边的高考专家

例10 已知数列{an}满足a1=3, a2=6, an+2=2an+1+3an,求通项an.5.构造等差或等比数列。

例11 正数列a0,a1,…,an,…满足anan2an1an2=2an-1(n≥2)且a0=a1=1,求通项。

2xn2例12

已知数列{xn}满足x1=2, xn+1=,n∈N+, 求通项。

2xn

三、基础训练题

1. 数列{xn}满足x1=2, xn+1=Sn+(n+1),其中Sn为{xn}前n项和,当n≥2时,xn=_________.2.数列{xn}满足x1=

2xn1,xn+1=,则{xn}的通项xn=_________.23xn21xn1+2n-1(n≥2),则{xn}的通项xn=_________.23.数列{xn}满足x1=1,xn=4.等差数列{an}满足3a8=5a13,且a1>0, Sn为前n项之和,则当Sn最大时,n=_________.5.等比数列{an}前n项之和记为Sn,若S10=10,S30=70,则S40=_________.6.数列{xn}满足xn+1=xn-xn-1(n≥2),x1=a, x2=b, Sn=x1+x2+…+ xn,则S100=_________.7.数列{an}中,Sn=a1+a2+…+an=n2-4n+1则|a1|+|a2|+…+|a10|=_________.欢迎广大教师踊跃来稿,稿酬丰厚。www.feisuxs 高考资源网(www.feisuxs),您身边的高考专家

8.若

x3xnx1x2,并且x1+x2+…+ xn=8,则x1=_________.x11x23x35xn2n1Sna2n,则limn=_________.nb3n1Tnn9.等差数列{an},{bn}的前n项和分别为Sn和Tn,若

2007n2n110.若n!=n(n-1)…2·1, 则(1)=_________.n!n1n11.若{an}是无穷等比数列,an为正整数,且满足a5+a6=48, log2a2·log2a3+ log2a2·log2a5+ log2a2·log2a6+ log2a5·log2a6=36,求1的通项。ann12.已知数列{an}是公差不为零的等差数列,数列{ab}是公比为q的等比数列,且b1=1, b2=5, b3=17, 求:(1)q的值;(2)数列{bn}的前n项和Sn。

四、高考水平训练题

1x21.已知函数f(x)=2x1x1a2006=_____________.1x271x1,若数列{a}满足a=,an+1=f(an)(n∈N+),则n

132(x1)2.已知数列{an}满足a1=1, an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项an=1(n1).(n2)3.若an=n2+n, 且{an}是递增数列,则实数的取值范围是__________.4.设正项等比数列{an}的首项a1=an=_____________.1, 前n项和为Sn, 且210S30-(210+1)S20+S10=0,则23n15.已知limn1,则a的取值范围是______________.nn33(a1)6.数列{an}满足an+1=3an+n(n ∈N+),存在_________个a1值,使{an}成等差数列;存在________个a1值,使{an}成等比数列。

欢迎广大教师踊跃来稿,稿酬丰厚。www.feisuxs 高考资源网(www.feisuxs),您身边的高考专家

7.已知ann401n402(n ∈N+),则在数列{an}的前50项中,最大项与最小项分别是____________.8.有4个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和中16,第二个数与第三个数的和是12,则这四个数分别为____________.9.设{an}是由正数组成的数列,对于所有自然数n, an与2的等差中项等于Sn与2的等比中项,则an=____________.10.在公比大于1的等比数列中,最多连续有__________项是在100与1000之间的整数.11.已知数列{an}中,an0,求证:数列{an}成等差数列的充要条件是

11111(n≥2)①恒成立。a1a2a2a3a3a4anan1a1an112.已知数列{an}和{bn}中有an=an-1bn, bn=

bn1(n≥2), 当a1=p, b1=q(p>0, q>0)且p+q=1时,21an1an;(3)求数列limbn.nan1(1)求证:an>0, bn>0且an+bn=1(n∈N);(2)求证:an+1=13.是否存在常数a, b, c,使题设等式 1·22+2·32+…+n·(n+1)2=

n(n1)

2(an+bn+c)12对于一切自然数n都成立?证明你的结论。

五、联赛一试水平训练题

1.设等差数列的首项及公差均为非负整数,项数不少于3,且各项和为972,这样的数列共有_________个。2.设数列{xn}满足x1=1, xn=

4xn12,则通项xn=__________.2xn17253.设数列{an}满足a1=3, an>0,且3anan1,则通项an=__________.4.已知数列a0, a1, a2, …, an, …满足关系式(3-an+1)·(6+an)=18,且a0=3,则1=__________.i0ai5.等比数列a+log23, a+log43, a+log83的公比为=__________.6.各项均为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的欢迎广大教师踊跃来稿,稿酬丰厚。www.feisuxs n高考资源网(www.feisuxs),您身边的高考专家

数列至多有__________项.7.数列{an}满足a1=2, a2=6, 且

an2an=2,则

an11limna1a2ann2________.8.数列{an} 称为等差比数列,当且仅当此数列满足a0=0, {an+1-qan}构成公比为q的等比数列,q称为此等差比数列的差比。那么,由100以内的自然数构成等差比数列而差比大于1时,项数最多有__________项.an9.设h∈N+,数列{an}定义为:a0=1, an+1=2ahn大于0的整数n,使得an=1?

an为偶数an为奇数。问:对于怎样的h,存在10.设{ak}k≥1为一非负整数列,且对任意k≥1,满足ak≥a2k+a2k+1,(1)求证:对任意正整数n,数列中存在n个连续项为0;(2)求出一个满足以上条件,且其存在无限个非零项的数列。

11.求证:存在唯一的正整数数列a1,a2,…,使得 a1=1, a2>1, an+1(an+1-1)=

anan23anan2111.六、联赛二试水平训练题

1.设an为下述自然数N的个数:N的各位数字之和为n且每位数字只能取1,3或4,求证:a2n是完全平方数,这里n=1, 2,….2.设a1, a2,…, an表示整数1,2,…,n的任一排列,f(n)是这些排列中满足如下性质的排列数目:①a1=1;②|ai-ai+1|≤2, i=1,2,…,n-1。试问f(2025)能否被3整除?

3.设数列{an}和{bn}满足a0=1,b0=0,且

an17an6bn3, bn18an7bn4,n0,1,2,.求证:an(n=0,1,2,…)是完全平方数。

4.无穷正实数数列{xn}具有以下性质:x0=1,xi+1

22x0xnx12(1)求证:对具有上述性质的任一数列,总能找到一个n≥1,使1≥3.999

x1x2xn均成立;

22x0xnx12(2)寻求这样的一个数列使不等式1<4对任一n均成立。

x1x2xn5.设x1,x2,…,xn是各项都不大于M的正整数序列且满足xk=|xk-1-xk-2|(k=3,4,…,n)①.试问这样的序列最多有多少项?

2(12an2)an116.设a1=a2=,且当n=3,4,5,…时,an=, 2232an14an2an1an2(ⅰ)求数列{an}的通项公式;(ⅱ)求证:

12是整数的平方。an7.整数列u0,u1,u2,u3,…满足u0=1,且对每个正整数n, un+1un-1=kuu,这里k是某个固定的正整数。如果u2000=2025,求k的所有可能的值。

8.求证:存在无穷有界数列{xn},使得对任何不同的m, k,有|xm-xk|≥

1.mk9.已知n个正整数a0,a1,…,an和实数q,其中0

第四篇:数学竞赛教案讲义(9)——不等式

第九章 不等式

一、基础知识

不等式的基本性质:

(1)a>ba-b>0;

(2)a>b, b>ca>c;(3)a>ba+c>b+c;

(4)a>b, c>0ac>bc;

(5)a>b, c<0ac

(6)a>b>0, c>d>0ac>bd;(7)a>b>0, n∈N+an>bn;

(8)a>b>0, n∈N+nanb;(9)a>0, |x|ax>a或x<-a;(10)a, b∈R,则|a|-|b|≤|a+b|≤|a|+|b|;(11)a, b∈R,则(a-b)2≥0a2+b2≥2ab;(12)x, y, z∈R+,则x+y≥

2xy, x+y+z33xyz.w.w.w.k.s.5.u.c.o.m 前五条是显然的,以下从第六条开始给出证明。(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);

nn再证性质(8),用反证法,若nanb,由性质(7)得(na)(nb),即a≤b,与a>b矛盾,所以假设不成立,所以nanb;由绝对值的意义知(9)成立;-|a|≤a≤|a|,-|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2xy(x一不等式,令3y)2≥0,所以x+y≥2xy,当且仅当x=y时,等号成立,再证另xa,3yb,3zc,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)= 1(a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a3+b3+c3≥3abc,即x+y+z≥33xyz,等号当且仅当x=y=z2时成立。w.w.w.k.s.5.u.c.o.m

二、方法与例题

1.不等式证明的基本方法。

(1)比较法,在证明A>B或A

例1 设a, b, 22

2A(A,B>0)与1Bx,y,z,有

c∈R+,试证:对任意实数

ababcbccaxyyzxzx+y+z2.(ab)(bc)(ca)cab

例2 若a

例3 已知a, b, c∈R+,求证:a+b+c-33abc≥a+b2ab.(3)数学归纳法。

例5 对任意正整数n(≥3),求证:nn+1>(n+1)n.(4)反证法。

例6 设实数a0, a1,„,an满足a0=an=0,且a0-2a1+a2≥0, a1-2a2+a3≥0,„, an-2-2an-1+an≥0,求证ak≤0(k=1, 2,„, n-1).(5)分类讨论法。

x2y2y2z2z2x20.例7 已知x, y, z∈R,求证:

yzzxxy+

(6)放缩法,即要证A>B,可证A>C1, C1≥C2,„,Cn-1≥Cn, Cn>B(n∈N+).例8 求证:1

例9 已知a, b, c是△ABC的三条边长,m>0,求证:111nn(n2).2321abc.ambmcm

(7)引入参变量法。

b3例10 已知x, y∈R, l, a, b为待定正数,求f(x, y)=22的最小值。

xy+

a3

例11 设x1≥x2≥x3≥x4≥2, x2+x3+x4≥x1,求证:(x1+x2+x3+x4)2≤4x1x2x3x4.(8)局部不等式。

例12 已知x, y, z∈R+,且x2+y2+z2=1,求证:

例13 已知0≤a, b, c≤1,求证:

(9)利用函数的思想。

例14 已知非负实数a, b, c满足ab+bc+ca=1,求f(a, b, c)=值。

2.几个常用的不等式。

33xyz.21x21y21z2abc≤2。bc1ca1ab1111的最小abbcca(1)柯西不等式:若ai∈R, bi∈R, i=1, 2, „, n,则(a)(b2ii1i1nn2i)(aibi)2.i1n等号当且仅当存在λ∈R,使得对任意i=1, 2, , n, ai=λbi,ai2变式1:若ai∈R, bi∈R, i=1, 2, „, n,则()bi1in(ai)2(bi)2i1i1nn.等号成立条件为ai=λbi,(i=1, 2, „, n)。

变式2:设ai, bi同号且不为0(i=1, 2, „, n),则

aibi1in(ai)2nabii1i1n.i等号成立当且仅当b1=b2=„=bn.(2)平均值不等式:设a1, a2,„,an∈R+,记Hn=

n111a1a2an, Gn=na1a2an, aa2an,QnAn=1n22a12a2an,则Hn≤Gn≤An≤Qn.即调和平均≤几何平均≤

n算术平均≤平方平均。

其中等号成立的条件均为a1=a2=„=an.【证明】

由柯西不等式得An≤Qn,再由Gn≤An可得Hn≤Gn,以下仅证Gn≤An.1)当n=2时,显然成立;

2)设n=k时有Gk≤Ak,当n=k+1时,记1ka1a2akak1=Gk+1.k1因为a1+a2+„+ak+ak+1+(k-1)Gk+1≥kka1a2akkkak1Gk1 k12k≥2k2ka1a2ak1Gk12k2kGk12kGk+1,所以a1+a2+„+ak+1≥(k+1)Gk+1,即Ak+1≥Gk+1.所以由数学归纳法,结论成立。

(3)排序不等式:若两组实数a1≤a2≤„≤an且b1≤b2≤„≤bn,则对于b1, b2, „, bn的任意排列bi,bi,,bi,有a1bn+a2bn-1+„+anb1≤a1bia2bianbi≤a1b1+a2b2+„+anbn.12n12n【证明】

引理:记

A0=0,Ak=

ai1ki(1kn),则

abii1ni

(si1nisi1)bi=si(bibi1)snbn(阿贝尔求和法)。

i1n1证法一:因为b1≤b2≤„≤bn,所以bibibi≥b1+b2+„+bk.12k记sk=bibibi-(b1+b2+„+bk),则sk≥0(k=1, 2, „, n)。

12k所以a1bia2bianbi12k-(a1b1+a2b2+„+anbn)=

aj1nj(bibj)

jsj1nj(ajaj1)+snan≤0.最后一个不等式的理由是aj-aj+1≤0(j=1, 2, „, n-1, sn=0), 所以右侧不等式成立,同理可证左侧不等式。

证法二:(调整法)考察a1bia2bianbi,若bibn,则存在。

12kj若bibn(j≤n-1),则将bi与bi互换。

jnj因为

banbnajbi(anbiajbn)(anaj)bn(ajan)bi(anaj)(bnbi)≥0,nnnn所 调整后,和是不减的,接下来若bin1bn1,则继续同样的调整。至多经n-1次调整就可将乱序和调整为顺序和,而且每次调整后和是不减的,这说明右边不等式成立,同理可得左边不等式。

222anana12a21a1+a2+„+an.例15 已知a1, a2,„,an∈R,求证;

a2a3ana1+

注:本讲的每种方法、定理都有极广泛的应用,希望读者在解题中再加以总结。

三、基础训练题

a2b21.已知0m,则m的最小值是____________.6.“a+b=4”是“不等式|x-a|+|x-b|<8的解集是{x|-2

11;②≤a3+b3<1;8411112③22;④ab2;⑤a22abab8.已知0<<,若sinb12ab;⑥

b1lgablga.22(1cos)43,则=____________.99.已知xx1x2xn,p=(x1-x)2+(x2-x)2+„+(xn-x)2, q=(x1-a)2+(x2-a)2+„

n+(xn-a)2, 若ax,则比较大小:p___________q.10.已知a>0, b>0且ab, m=aabb, n=abba, 则比较大小:m_________n.113n.22n22n1112.已知0

四、高考水平训练题

1.已知A=asin2x+bcos2x, B=acos2x+bsin2x(a, b, x∈R),设m=AB, n=ab, P=A2+B2, q=a2+b2,则下列结论成立的有]__________.(1)m≥n, p≥q;(2)m≤n, p≤q;(3)m+p≥n+q;(4)m+q≥n+p.2.已知a, b, c, d∈R,M=4(a-b)(c-d), N=(a-b)(c-b)+(d-a)(d-c)+(c-d)(c-b)+(a-b)(a-d),则比较大小:M________N.3.若ab,a,bR+,且a3,b________.4.已知△ABC的三边长a, b, c满足b+c≤2a, a+c≤2b,则

a3ab,将3,a,b,从小到大排列为a12b的取值范围是________.a5.若实数x, y满足|x|+|y|≤1,则z=x2-xy+y2的最大值与最小值的和为________.6.设函数f(x)=2x3x12(x∈[-4,2]),则f(x)的值域是________.7.对x1>x2>0, 1>a>0,记y1x1x2________y1y2.8.已知函数yx1axaxx2,y212,比较大小:1a1a1a1aasinx4的值域是,,则实数a的值为________.1cosx39.设a≤b

五、联赛一试水平训练题

1.已知a1, a2, b1, b2, c1, c∈R,a1c1-b1=a2c2b2>0, P=(a1-a2)(c1-c2), Q=(b1-b2)2,比较大小:P_______Q.2已知x2+y2-xy=1,则|x+y-3|+|x+y+2|=__________.3.二次函数f(x)=x2+ax+b,记M=max{|f(1)|, |f(2)|, |f(3)|},则M的最小值为__________.4.设实数a, b, c, d满足a≤b≤c≤d或者a≥b≥c≥d,比较大小: 4(a+c+d)(a+b+d)__________(2a+3d+c)(2a+2b+c+d).5.已知xi∈R, i=1, 2, „,n且+

22xy2yz的最大值。222xyz11,则x1x2„xn的最小值为__________(这里1xi1inn>1).6.已知x, y∈R, f(x, y)=x2+6y2-2xy-14x-6y+72的最小值为__________.7.已知0≤ak≤1(k=1, 2, „,2n),记a2n+1=a1, a2n+2=a2,则__________.8.已知0≤x≤1, 0≤y≤1, 0≤z≤1,则

(ak12nkak1ak2)的最大值为

xyz的最大值为__________.yz1zx1xy19.已知3≤x≤5,求证:2x12x3153x219.2abc310abc.327=1。又0<λ1≤λ2≤„≤λn,求证:10.对于不全相等的正整数a, b, c,求证:

n11.已知ai>0(i=1, 2, „, n),且

ai1inai(iai)i1i1in(1n)2≤.41n

六、联赛二试水平训练题

1.设正实数x, y, z满足x+y+z=1,求证:

xyxyyzyzyzxzxzxzxy2.22.设整数x1, x2, „,xn与y1, y2, „, yn满足1y1+y2+„+ym,求证:x1x2xn>y1y2„ym.3.设f(x)=x2+a,记f'(x)f(x), fn(x)=f(fn-1(x))(n=2, 3, „),M={a∈R|对所有正整数n, |fn(0)| ≤2},求证:M2,。

414.给定正数λ和正整数n(n≥2),求最小的正数M(λ),使得对于所有非负数x1, x2,„,xn,有M(λ)(xk1nk)xxk.nnkk1k1nn1119.5.已知x, y, z∈R,求证:(xy+yz+zx)222(yz)(zx)4(xy)+6.已知非负实数a, b, c满足a+b+c=1,求证:2≤(1-a2)2+(1-b2)2+(1-c2)2≤(1+a)(1+b)(1+c),并求出等号成立的条件。

w.w.w.k.s.5.u.c.o.m

第五篇:小学生数学趣味知识竞赛试题

小学生数学知识竞赛试题

编号学校姓名得分

亲爱的同学们:

欢迎你们参加数学竞赛!你们是各个学校选拔出来的最优秀的小数学家,这份试卷将为你提供一个展示自我实力和魅力的平台,希望你们能在这60分钟内戒急戒燥、仔细审题、认真答题,向敬爱的父母、老师和学校交上一份完美的答卷。试题共有二十五个括号,每个括号4分,考试时只要在括号里直接写出得数就可以了。努力吧!永远奋飞向前的同学们!相信你一定能发挥出自己最好的水平!

1、9999×2222+3333×3334=()。

2、一个最简分数的分子扩大4倍,分母缩小3倍后正好等于10,那么这个最简分数是()。

3、99×99=9801,999×999=998001,9999×9999=99980001。不用计算,直接写出99999×99999=()。

4、数手指。伸出你的左手,按下面的顺序数:拇指

1、食指

2、中指

3、无名

4、小指5,无名指

6、中指

7、食指

8、拇指

9、食指

10、……这样的顺序数,2025这个数是()指。

5、观察下面的图形,按规律画出下一个。

6、一个平底锅,每次可以煎2个蛋,每个蛋要煎两面,煎一面要用1分钟。煎

3个蛋最少要()分钟。

7、数一数,右边的图形中

一共有()个角。

8、从3时到3时半,钟面上的时针转过了()度。

9、每当唐僧念一声紧箍咒,孙悟空头上的金箍就会缩短0.314厘米,此时孙悟空

头上的金箍将内陷()厘米。

10、下面图形中阴影部分的面积是()平方厘米。

(第10题)(第11题)

11、上面图形中阴影部分的面积是()平方厘米。

12、有两盒相同的糖,每盒长20厘米,宽15厘米,高10厘米。如果将两盒糖

果包成一包,包装纸最少要()平方厘米。

13、王叔叔想用24米长的篱笆,在一边靠墙的地方围一个长方形。这个长方形的面积最大比()平方米还多。(得数填整数)

温馨提示:松一松手腕,理一理头绪,再翻开下一页吧!

14、小方桌面的边长是1米,把它的四边撑开,就成了一张圆桌面(如下

图)。圆桌面的面积是()平方米。

15、有一把磨损严重的直尺,上面的大部分刻度已经看不清了,能看清的只有

以下四个,那么用这把直尺一次能直接量出()个不同的长度。

16、长汀汽车西客站是1路和2路汽车的起点站。1路汽车每5分钟发车一次,2路汽车每8分钟发车一次。这两路汽车同时发车以后,至少再经过()分钟又同时发车。

17、入冬前,妈妈买回了一筐苹果。清理时,发现这筐苹果2个、2个地数,余1个;3个、3个地数,余2个;4个、4个地数,余3个;5个、5个地数,余4个;6个、6个地数,余5个。这筐苹果至少有()个。

18、小明家离火车站很近,他每天都能根据车站大楼的钟声起床。车站大楼的钟,每敲响一下延时3秒,间隔1秒后再敲第二下。假如从第一下钟声响起,小明就醒了,那么到小明确切判断出已是清晨6时,前后共经过了()秒钟。

19、某学校134名学生到公园租船,租一条大船需60元可乘坐6人;租一条小

船需45元可乘坐4人。请你算一算,租金最省是()元。

20、一个两层的书架,上层放的书比下层的3倍还多18本。如果把上层的书拿

出101本放到下层,那么两层所放的书本数相等。原来下层有书()本。

21、一辆汽车以每小时50千米的速度,从相距80千米的甲地开往乙地。

所带的汽油最多可以行2小时,在途中不加油的情况下,为保证返回出发地,最多开出()千米,就应往回行驶了。

22、有奖销售活动:

(1)这次有奖销售活动的奖品总额为()元,中奖率为()%。

(2)如果奖券全部送出,则至少卖出()元商品。

(3)奖金额至多占销售额的()%。

同学们,题目都做好了吗?是不是再检查一遍呢?

相信你一定能交一份满意的答卷!

本类热门