工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 范文大全 > 一号文库

五种辅助线助你证全等

最新文章

五种辅助线助你证全等

在证明三角形全等时,有时需添加辅助线,下面介绍证明全等时常见的五种辅助线,可以帮助你更好的学习。

一、截长补短

一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.

例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.

分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD.

证明:在AC上截取AF=AE,连接OF.

∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60°

∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.

显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°

在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC

∴△DOC≌△FOC,CF=CD

∴AC=AF+CF=AE+CD.

二、中线倍长

三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路.

例2.已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是().

分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.

解:如图2所示,设AB=7,AC=5,BC上中线AD=x.

延长AD至E,使DE

=

AD=x.

∵AD是BC边上的中线,∴BD=CD

∠ADC=∠EDB(对顶角)∴△ADC≌△EDB

∴BE=AC=5

∵在△ABE中

AB-BE<AE<AB+BE

即7-5<2x<7+5     ∴1<x<6

三、作平行线

当三角形问题中有相等的角或等腰等条件时,可通过作平行线将相等的角转换到某一个三角形中得到另外的等腰三角形或相等的角,从而为证明全等提供条件.

例3.如图3,在等腰△ABC中,AB=AC,在AB上截取BD,在AC延长线上截取CE,且使CE=BD.连接DE交BC于F.求证:DF=EF.

分析:要证DF=EF,必须借助三角形全等.而现有图形中没有全等三角形.由等腰三角形条件,可知∠B=∠ACB,作DH∥AE,可得∠DHB=∠ACB.则△DBH为等腰三角形.

证明:作DH∥AE交BC于H.

∴∠DHB=∠ACB,∵AB=AC,∴∠B=∠ACB

∴∠DHB=∠B,DH=BD

∵CE=BD    ∴DH=

CE

又DH∥AE,∠HDF=∠E

∠DFH=∠EFC(对顶角)

∴△ DFH≌△EFC(AAS)∴DF=EF

四、补全图形

在一些求证三角形问题中,延长某两条线段(边)相交,构成一个封闭的图形,可找到更多的相等关系,有助于问题的解决.

例4.如图4,在△ABC中,AC=BC,∠B=90°,BD为∠ABC的平分线.若A点到直线BD的距离AD为a,求BE的长.

分析:题设中只有一条已知线段AD,且为直角边,而要求的BE为斜边.要找到它们之间的关系,需设法构造其他的全等三角形.

证明:延长AD、BC相交于F.

由BD为∠ABC的平分线,BD⊥AF.

易证△ADB≌△FDB   ∴FD=

AD=a

AF=2a     ∠F=∠BAD

又∠BAD+∠ABD=90°,∠F+∠FAC=90°

∴∠ABD=∠FAC

∵BD为∠ABC的平分线  ∴∠ABD=∠CBE

∴∠FAC=∠CBE,而∠ECB=∠ACF=90°,AC=BC

∴△ACF≌△BCE(ASA)∴BE=AF=2a

五、利用角的平分线对称构造全等

角的平分线是角的对称轴,在证明全等过程中不仅提供了两个相等的角,还有一条公共边,利用角的平分线在角的两边上截取相等的线段,或向两边作垂线,对称构造出全等三角形是常用的证明方法.

例5.如图5,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°.证明:AD=CD.

分析:由角的平分线条件,在BC上截取BE=BA,可构造△ABD≌△EBD,从而AD=DE.则只要证明DE=CD.

证明:在BC上截取BE=BA,连接DE.

由BD平分∠ABC,易证△ABD≌△EBD

∴AD=DE    ∠A=∠BED

又∠A+∠C=180°,∠BED+∠DEC=180°

∴∠DEC=∠C,∴DE=CD

∴AD=CD

1)

用天平测量物体质量时,物体放在天平的左盘,砝码放在天平的右盘,当右盘中不放最小砝码时,左盘下沉,放最小砝码时,右盘下沉,这时取下最小砝码,向右移动游码,让天平横梁再次平衡.

(2)物体的质量等于砝码的质量加游码对应的刻度值.

(3)食用油的质量等于食用油和烧杯的质量减剩余食

2)

减烧杯的质量。

3)

本类热门