工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 范文大全 > 一号文库

遗传算法求解TSP问题实验报告

最新文章

人工智能实验报告

实验六

遗传算法实验II

一、实验目的:

熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。

二、实验原理:

旅行商问题,即TSP问题(Traveling

Salesman

Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。TSP问题是一个组合优化问题。该问题可以被证明具有NPC计算复杂性。因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。

遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代。后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程。群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。要求利用遗传算法求解TSP问题的最短路径。

三、实验内容:

1、参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。

2、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。

3、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。

4、上交源代码。

四、实验报告要求:

1、画出遗传算法求解TSP问题的流程图。

2、分析遗传算法求解不同规模的TSP问题的算法性能。

规模越大,算法的性能越差,所用时间越长。

3、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。

(1)

种群规模对算法结果的影响

x

0

1.1

3.5

4.5

y

1.1

5.1

4.5

实验次数:10

最大迭代步数:100

交叉概率:0.85

变异概率:0.15

种群规模

平均适应度值

最优路径

25.264

4-5-8-7-6-3-1-0-9-2

26.3428

2-9-1-0-3-6-7-5-8-4

25.1652

1-3-6-7-5-8-4-2-9-0

25.1652

0-1-3-6-7-5-8-4-2-9

25.1652

9-0-1-3-6-7-5-8-4-2

25.1652

1-0-9-2-4-8-5-7-6-3

150

25.1652

5-8-4-2-9-0-1-3-6-7

200

25.1652

1-3-6-7-5-8-4-2-9-0

250

25.1652

3-1-0-9-2-4-8-5-7-6

300

25.1652

5-8-4-2-9-0-1-3-6-7

如表所示,显然最短路径为25.1652m,最优路径为1-0-9-1-3-6-7-5-8-4-2或3-1-0-9-2-4-8-5-7-6,注意到这是一圈,顺时针或者逆时针都可以。当种群规模为10,20时,并没有找到最优解。因此并不是种群规模越小越好。

(2)

交叉概率对算法结果的影响

x

1.1

3.5

3.5

4.5

y

1.1

5.1

8.5

实验次数:15

种群规模:25

最大迭代步数:100

变异概率:0.15

实验结果:

交叉概率

最好适应度

最差适应度

平均适应度

最优解

0.001

28.0447

36.6567

32.6002

9-2-6-0-5-4-8-7-3-1

0.01

27.0935

34.9943

32.1495

7-8-3-1-9-2-6-0-5-4

0.1

28.0447

35.3033

31.9372

7-3-1-9-2-6-0-5-4-8

0.15

28.0447

34.1175

31.2183

0-5-4-8-7-3-1-9-2-6

0.2

28.7108

33.9512

30.9035

3-1-9-2-6-5-0-4-7-8

0.25

28.0447

35.1623

30.7456

1-3-7-8-4-5-0-6-2-9

0.3

27.0935

31.9941

29.9428

8-3-1-9-2-6-0-5-4-7

0.35

27.0935

32.8085

30.9945

9-1-3-8-7-4-5-0-6-2

0.4

27.0935

32.5313

30.1534

1-3-8-7-4-5-0-6-2-9

0.45

27.0935

33.2025

30.1757

8-3-1-9-2-6-0-5-4-7

0.5

28.0934

33.6307

30.9026

5-0-2-6-9-1-3-8-7-4

0.55

27.0935

33.5233

29.1304

1-9-2-6-0-5-4-7-8-3

0.6

27.0935

33.2512

30.7836

3-1-9-2-6-0-5-4-7-8

0.65

28.0447

33.7003

30.9371

5-4-8-7-3-1-9-2-6-0

0.7

27.0935

32.0927

29.9502

9-1-3-8-7-4-5-0-6-2

0.75

28.0447

32.4488

30.3699

0-5-4-8-7-3-1-9-2-6

0.8

27.0935

32.1551

29.9382

7-4-5-0-6-2-9-1-3-8

0.85

27.0935

34.5399

30.3594

5-0-6-2-9-1-3-8-7-4

0.9

27.0935

32.6273

30.69

6-0-5-4-7-8-3-1-9-2

0.95

27.0935

32.4672

29.919

6-2-9-1-3-8-7-4-5-0

(注:红色表示非最优解)

在该情况下,交叉概率过低将使搜索陷入迟钝状态,得不到最优解。

(3)

变异概率对算法结果的影响

x

1.1

3.5

3.5

4.5

y

1.1

5.1

8.5

实验次数:10

种群规模:25

最大迭代步数:100

交叉概率:0.85

实验结果:

变异概率

最好适应度

最差适应度

平均适应度

最优解

0.001

29.4717

34.732

32.4911

0-6-2-1-9-3-8-7-4-5

0.01

29.0446

34.6591

32.3714

8-4-5-0-2-6-9-1-3-7

0.1

28.0934

34.011

30.9417

5-0-2-6-9-1-3-8-7-4

0.15

27.0935

32.093

30.2568

6-0-5-4-7-8-3-1-9-2

0.2

27.0935

32.2349

30.3144

8-7-4-5-0-6-2-9-1-3

0.25

27.0935

32.718

30.1572

4-5-0-6-2-9-1-3-8-7

0.3

27.0935

32.4488

30.2854

0-5-4-7-8-3-1-9-2-6

0.35

27.0935

33.3167

30.7748

1-3-8-7-4-5-0-6-2-9

0.4

29.0446

34.3705

31.3041

2-0-5-4-8-7-3-1-9-6

0.45

27.0935

31.374

29.6816

2-6-0-5-4-7-8-3-1-9

0.5

27.0935

32.3752

30.2211

2-9-1-3-8-7-4-5-0-6

0.55

27.0935

33.3819

30.6623

1-3-8-7-4-5-0-6-2-9

0.6

28.0934

33.2512

30.36

1-3-8-7-4-5-0-2-6-9

0.65

27.0935

32.7491

30.0201

3-1-9-2-6-0-5-4-7-8

0.7

28.7108

32.4238

30.785

1-3-8-7-4-0-5-6-2-9

0.75

27.0935

31.8928

30.2451

1-9-2-6-0-5-4-7-8-3

0.8

28.0934

31.6135

30.3471

9-1-3-8-7-4-5-0-2-6

0.85

29.662

33.2392

31.1585

2-9-1-3-7-8-4-0-5-6

0.9

28.0447

32.0387

30.4152

0-5-4-8-7-3-1-9-2-6

0.95

28.0447

31.3036

30.0067

9-1-3-7-8-4-5-0-6-2

从该表可知,当变异概率过大或过低都将导致无法得到最优解。

4、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。

不同变异策略和不同个体选择分配策略几乎不影响算法运行的时间,但会影响适应度。

五、实验心得与体会

通过本实验,更加深入体会了参数设置对算法结果的影响。同一个算法,参数值不同,获得的结果可能会完全不同。

同时通过本次实验,使自己对遗传算法有了更进一步的了解。遗传算法是一种智能优化算法,它能较好的近似求解TSP问题,在问题规模比较大的时候,遗传算法的优势就明显体现出来,当然不能完全保证能得到最优解。

本类热门