工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 范文大全 > 一号文库

教辅:高考数学二轮复习考点-导数及其应用1

最新文章

考点七 导数及其应用(一)

一、选择题

1.(2024·山东滨州三模)函数y=ln

x的图象在点x=e(e为自然对数的底数)处的切线方程为()

A.x+ey-1+e=0

B.x-ey+1-e=0

C.x+ey=0

D.x-ey=0

答案 D

解析 因为y=ln

x,所以y′=,所以y′|x=e=,又当x=e时,y=ln

e=1,所以切线方程为y-1=(x-e),整理得x-ey=0.故选D.2.已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点的个数为()

A.1

B.2

C.3

D.4

答案 A

解析 如图,在区间(a,b)内,f′(c)=0,且在点x=c附近的左侧f′(x)<0,右侧f′(x)>0,所以函数y=f(x)在区间(a,b)内只有1个极小值点,故选A.3.(2024·全国卷Ⅰ)函数f(x)=x4-2x3的图象在点(1,f(1))处的切线方程为()

A.y=-2x-1

B.y=-2x+1

C.y=2x-3

D.y=2x+1

答案 B

解析 ∵f(x)=x4-2x3,∴f′(x)=4x3-6x2,∴f(1)=-1,f′(1)=-2,∴所求切线的方程为y+1=-2(x-1),即y=-2x+1.故选B.4.已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为()

A.0

B.-5

C.-10

D.-37

答案 D

解析 由题意知,f′(x)=6x2-12x,由f′(x)=0得x=0或x=2,当x<0或x>2时,f′(x)>0,当0

x+f′(x)的零点所在的区间是()

A.B.

C.(1,2)

D.(2,3)

答案 B

解析 ∵f(x)=x2-bx+a,∴二次函数的对称轴为x=,结合函数的图象可知,0

x+f′(x)=aln

x+2x-b在(0,+∞)上单调递增.又g=aln

+1-b<0,g(1)=aln

1+2-b>0,∴函数g(x)的零点所在的区间是.故选B.6.(2024·山东泰安二轮复习质量检测)已知函数f(x)=(x-1)ex-e2x+ax只有一个极值点,则实数a的取值范围是()

A.a≤0或a≥

B.a≤0或a≥

C.a≤0

D.a≥0或a≤-

答案 A

解析 f(x)=(x-1)ex-e2x+ax,令f′(x)=xex-ae2x+a=0,故x-aex+=0,当a=0时,f′(x)=xex,函数在(-∞,0)上单调递减,在(0,+∞)上单调递增,f′(0)=0,故函数有唯一极小值点,满足条件;当a≠0时,即=ex-e-x,设g(x)=ex-e-x,则g′(x)=ex+e-x≥2恒成立,且g′(0)=2,画出函数g(x)和y=的图象,如图所示.根据图象知,当≤2,即a<0或a≥时,满足条件.综上所述,a≤0或a≥.故选A.7.(多选)若直线l与曲线C满足下列两个条件:①直线l在点P(x0,y0)处与曲线C相切;②曲线C在点P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.则下列结论正确的是()

A.直线l:y=0在点P(0,0)处“切过”曲线C:y=x3

B.直线l:y=x-1在点P(1,0)处“切过”曲线C:y=ln

x

C.直线l:y=x在点P(0,0)处“切过”曲线C:y=sinx

D.直线l:y=x在点P(0,0)处“切过”曲线C:y=tanx

答案 ACD

解析 A项,因为y′=3x2,当x=0时,y′=0,所以l:y=0是曲线C:y=x3在点P(0,0)处的切线.当x<0时,y=x3<0;当x>0时,y=x3>0,所以曲线C在点P附近位于直线l的两侧,结论正确;B项,y′=,当x=1时,y′=1,在P(1,0)处的切线为l:y=x-1.令h(x)=x-1-ln

x,则h′(x)=1-=(x>0),当x>1时,h′(x)>0;当0

x,即当x>0时,曲线C全部位于直线l的下侧(除切点外),结论错误;C项,y′=cosx,当x=0时,y′=1,在P(0,0)处的切线为l:y=x,由正弦函数图象可知,曲线C在点P附近位于直线l的两侧,结论正确;D项,y′=,当x=0时,y′=1,在P(0,0)处的切线为l:y=x,由正切函数图象可知,曲线C在点P附近位于直线l的两侧,结论正确.故选ACD.8.(多选)(2024·山东威海三模)已知函数f(x)的定义域为(0,+∞),导函数为f′(x),xf′(x)-f(x)=xln

x,且f=,则()

A.f′=0

B.f(x)在x=处取得极大值

C.0

D.f(x)在(0,+∞)上单调递增

答案 ACD

解析 ∵函数f(x)的定义域为(0,+∞),导函数为f′(x),xf′(x)-f(x)=xln

x,即满足=,∵′=,∴′=,∴可设=ln2

x+b(b为常数),∴f(x)=xln2

x+bx,∵f=·ln2

+=,解得b=.∴f(x)=xln2

x+x,∴f(1)=,满足0

x+ln

x+=(ln

x+1)2≥0,且仅有f′=0,∴B错误,A,D正确.故选ACD.二、填空题

9.(2024·全国卷Ⅲ)设函数f(x)=.若f′(1)=,则a=________.答案 1

解析 f′(x)==,则f′(1)==,整理可得a2-2a+1=0,解得a=1.10.(2024·山东新高考质量测评联盟高三5月联考)曲线f(x)=asinx+2(a∈R)在点(0,f(0))处的切线方程为y=-x+2,则a=________.答案 -1

解析 f(x)=asinx+2(a∈R),则f′(x)=acosx,故当x=0时,f′(0)=a,又函数f(x)在点(0,f(0))处的切线方程为y=-x+2,所以a=-1.11.要做一个圆锥形的漏斗,其母线长为20

cm,要使体积最大,则高为________

cm.答案

解析 设高为h

cm,则底面半径r=

cm,所以体积V=r2h=h(400-h2),则V′=(400-3h2).令V′=(400-3h2)=0,解得h=.即当高为

cm时,圆锥的体积最大.

12.(2024·吉林第四次调研测试)若函数f(x)=mx2-ex+1(e为自然对数的底数)在x=x1和x=x2两处取得极值,且x2≥2x1,则实数m的取值范围是________.

答案

解析 因为f(x)=mx2-ex+1,所以f′(x)=2mx-ex,又函数f(x)在x=x1和x=x2两处取得极值,所以x1,x2是方程2mx-ex=0的两不等实根,且x2≥2x1,即m=(x≠0)有两不等实根x1,x2,且x2≥2x1.令h(x)=(x≠0),则直线y=m与曲线h(x)=有两交点,且交点横坐标满足x2≥2x1,又h′(x)==,由h′(x)=0,得x=1,所以,当x>1时,h′(x)>0,即函数h(x)=在(1,+∞)上单调递增;

当x<0和0

当x2=2x1时,由=,得x1=ln

2,此时m==,因此,由x2≥2x1,得m≥.三、解答题

13.(2024·全国卷Ⅰ)已知函数f(x)=ex+ax2-x.(1)当a=1时,讨论f(x)的单调性;

(2)当x≥0时,f(x)≥x3+1,求a的取值范围.

解(1)当a=1时,f(x)=ex+x2-x,f′(x)=ex+2x-1,令φ(x)=ex+2x-1,则φ′(x)=ex+2>0,故f′(x)单调递增,注意到f′(0)=0,故当x∈(-∞,0)时,f′(x)<0,f(x)单调递减,当x∈(0,+∞)时,f′(x)>0,f(x)单调递增.

(2)由f(x)≥x3+1,得ex+ax2-x≥x3+1,其中x≥0,①当x=0时,不等式为1≥1,显然成立,符合题意;

②当x>0时,分离参数a得a≥-,记g(x)=-,g′(x)=-,令h(x)=ex-x2-x-1(x≥0),则h′(x)=ex-x-1,令H(x)=ex-x-1,则H′(x)=ex-1≥0,故h′(x)单调递增,h′(x)≥h′(0)=0,故函数h(x)单调递增,h(x)≥h(0)=0,由h(x)≥0可得ex-x2-x-1≥0恒成立,故当x∈(0,2)时,g′(x)>0,g(x)单调递增;

当x∈(2,+∞)时,g′(x)<0,g(x)单调递减.

因此,g(x)max=g(2)=,综上可得,实数a的取值范围是.14.(2024·山东济南6月仿真模拟)已知函数f(x)=aln

(x+b)-.(1)若a=1,b=0,求f(x)的最大值;

(2)当b>0时,讨论f(x)极值点的个数.

解(1)当a=1,b=0时,f(x)=ln

x-,此时,函数f(x)的定义域为(0,+∞),f′(x)=-=,由f′(x)>0得04.所以f(x)在(0,4)上单调递增,在(4,+∞)上单调递减.

所以f(x)max=f(4)=2ln

2-2.(2)当b>0时,函数f(x)的定义域为[0,+∞),f′(x)=-=,①当a≤0时,f′(x)<0对任意的x∈(0,+∞)恒成立,故f(x)在(0,+∞)上单调递减,所以此时f(x)极值点的个数为0;

②当a>0时,设h(x)=-x+2a-b,(ⅰ)当4a2-4b≤0,即0

时,f′(x)≤0对任意的x∈(0,+∞)恒成立,即f(x)在(0,+∞)上单调递减,所以此时f(x)极值点的个数为0;

(ⅱ)当4a2-4b>0,即a>时,令t=(t≥0),则h(t)=-t2+2at-b,t1+t2=2a>0,t1t2=b>0,所以t1,t2都大于0,即f′(x)在(0,+∞)上有2个左右异号的零点,所以此时f(x)极值点的个数为2.综上所述,当a≤时,f(x)极值点的个数为0;当a>时,f(x)极值点的个数为2.一、选择题

1.(2024·山东省实验中学4月高考预测)已知函数f(x)=3x+2cosx,若a=f(3),b=f(2),c=f(log27),则a,b,c的大小关系是()

A.a

B.cC.b

D.b答案 D

解析 根据题意,函数f(x)=3x+2cosx,其导函数f′(x)=3-2sinx,则有f′(x)=3-2sinx>0在R上恒成立,则f(x)在R上为增函数.又由2=log24A.有3个极大值点

B.有3个极小值点

C.有1个极大值点和2个极小值点

D.有2个极大值点和1个极小值点

答案 D

解析 结合函数图象可知,当x0,函数y=g(x)-f(x)单调递增;当ag′(x),此时y′=g′(x)-f′(x)<0,函数y=g(x)-f(x)单调递减;当00,函数y=g(x)-f(x)单调递增;当x>b时,f′(x)>g′(x),此时y′=g′(x)-f′(x)<0,函数y=g(x)-f(x)单调递减,故函数在x=a,x=b处取得极大值,在x=0处取得极小值.故选D.3.(2024·株洲市第二中学4月模拟)已知函数f(x)是定义在R上的偶函数,设函数f(x)的导函数为f′(x),若对任意x>0都有2f(x)+xf′(x)>0成立,则()

A.4f(-2)<9f(3)

B.4f(-2)>9f(3)

C.2f(3)>3f(-2)

D.3f(-3)<2f(-2)

答案 A

解析 首先令g(x)=x2f(x),g′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)],当x>0时,g′(x)>0,g(x)在[0,+∞)上是增函数,又g(x)是偶函数,所以4f(-2)=g(-2)=g(2)

A.y=2x+1

B.y=2x+

C.y=x+1

D.y=x+

答案 D

解析 设直线l与曲线y=的切点为(x0,),x0>0,函数y=的导数为y′=,则直线l的斜率k=,直线l的方程为y-=·(x-x0),即x-2y+x0=0.由于直线l与圆x2+y2=相切,则=,两边平方并整理得5x-4x0-1=0,解得x0=1或x0=-(舍去),所以直线l的方程为x-2y+1=0,即y=x+.故选D.5.(2024·山东青岛一模)已知函数f(x)=(e=2.718为自然对数的底数),若f(x)的零点为α,极值点为β,则α+β=()

A.-1

B.0

C.1

D.2

答案 C

解析 ∵f(x)=∴当x≥0时,令f(x)=0,即3x-9=0,解得x=2;当x<0时,f(x)=xex<0恒成立,∴f(x)的零点为α=2.又当x≥0时,f(x)=3x-9为增函数,故在[0,+∞)上无极值点;当x<0时,f(x)=xex,f′(x)=(1+x)ex,当x<-1时,f′(x)<0,当x>-1时,f′(x)>0,∴当x=-1时,f(x)取到极小值,即f(x)的极值点β=-1,∴α+β=2-1=1.故选C.6.(2024·山西太原高三模拟)点M在曲线G:y=3ln

x上,过M作x轴的垂线l,设l与曲线y=交于点N,=,且P点的纵坐标始终为0,则称M点为曲线G上的“水平黄金点”,则曲线G上的“水平黄金点”的个数为()

A.0

B.1

C.2

D.3

答案 C

解析 设M(t,3ln

t),则N,所以==,依题意可得ln

t+=0,设g(t)=ln

t+,则g′(t)=-=,当0时,g′(t)>0,则g(t)单调递增,所以g(t)min=g=1-ln

3<0,且g=-2+>0,g(1)=>0,所以g(t)=ln

t+=0有两个不同的解,所以曲线G上的“水平黄金点”的个数为2.故选C.7.(多选)(2024·山东济宁邹城市第一中学高三下五模)已知函数f(x)=x3+ax+b,其中a,b∈R,则下列选项中的条件使得f(x)仅有一个零点的有()

A.a

B.a=ln

(b2+1)

C.a=-3,b2-4≥0

D.a=-1,b=1

答案 BD

解析 由题知f′(x)=3x2+a.对于A,由f(x)是奇函数,知b=0,因为a<0,所以f(x)存在两个极值点,由f(0)=0知,f(x)有三个零点,A错误;对于B,因为b2+1≥1,所以a≥0,f′(x)≥0,所以f(x)单调递增,则f(x)仅有一个零点,B正确;对于C,若取b=2,f′(x)=3x2-3,则f(x)的极大值为f(-1)=4,极小值为f(1)=0,此时f(x)有两个零点,C错误;对于D,f(x)=x3-x+1,f′(x)=3x2-1,易得f(x)的极大值为f=+1>0,极小值为f=-+1>0,可知f(x)仅有一个零点,D正确.故选BD.8.(多选)(2024·山东省实验中学4月高考预测)关于函数f(x)=+ln

x,下列判断正确的是()

A.x=2是f(x)的极大值点

B.函数y=f(x)-x有且只有1个零点

C.存在正实数k,使得f(x)>kx成立

D.对任意两个正实数x1,x2,且x2>x1,若f(x1)=f(x2),则x1+x2>4

答案 BD

解析 函数的定义域为(0,+∞),函数的导数f′(x)=-+=,∴在(0,2)上,f′(x)<0,函数单调递减,在(2,+∞)上,f′(x)>0,函数单调递增,∴x=2是f(x)的极小值点,故A错误;y=f(x)-x=+ln

x-x,∴y′=-+-1=<0,函数在(0,+∞)上单调递减,且f(1)-1=2+ln

1-1=1>0,f(2)-2=1+ln

2-2=ln

2-1<0,∴函数y=f(x)-x有且只有1个零点,故B正确;若f(x)>kx,可得k<+,令g(x)=+,则g′(x)=,令h(x)=-4+x-xln

x,则h′(x)=-ln

x,∴在(0,1)上,函数h(x)单调递增,在(1,+∞)上,函数h(x)单调递减,∴h(x)≤h(1)<0,∴g′(x)<0,∴g(x)=+在(0,+∞)上单调递减,函数无最小值,∴不存在正实数k,使得f(x)>kx恒成立,故C错误;令t∈(0,2),则2-t∈(0,2),2+t>2,令g(t)=f(2+t)-f(2-t)=+ln

(2+t)--ln

(2-t)=+ln,则g′(t)=+·=+=<0,∴g(t)在(0,2)上单调递减,则g(t)<g(0)=0,令x1=2-t,由f(x1)=f(x2),得x2>2+t,则x1+x2>2-t+2+t=4,当x2≥4时,x1+x2>4显然成立,∴对任意两个正实数x1,x2,且x2>x1,若f(x1)=f(x2),则x1+x2>4,故D正确.故选BD.二、填空题

9.(2024·山东高考实战演练仿真四)设函数f(x)的导数为f′(x),且f(x)=x3+f′x2-x,则f′(1)=________.答案 0

解析 因为f(x)=x3+f′x2-x,所以f′(x)=3x2+2f′x-1.所以f′=3×2+2f′×-1,则f′=-1,所以f(x)=x3-x2-x,则f′(x)=3x2-2x-1,故f′(1)=0.10.若f(x)+3f(-x)=x3+2x+1对x∈R恒成立,则曲线y=f(x)在点(1,f(1))处的切线方程为________.

答案 10x+4y-5=0

解析 ∵f(x)+3f(-x)=x3+2x+1,①

∴f(-x)+3f(x)=-x3-2x+1,②

联立①②,得f(x)=-x3-x+,则f′(x)=-x2-1,∴f′(1)=--1=-,又f(1)=--1+=-,∴切线方程为y+=-(x-1),即10x+4y-5=0.11.(2024·广东湛江模拟)若x1,x2是函数f(x)=x2-7x+4ln

x的两个极值点,则x1x2=________,f(x1)+f(x2)=________.答案 2 4ln

2-

解析 f′(x)=2x-7+=0⇒2x2-7x+4=0⇒x1+x2=,x1x2=2,f(x1)+f(x2)=x-7x1+4ln

x1+x-7x2+4ln

x2=(x1+x2)2-2x1x2-7(x1+x2)+4ln

(x1x2)=4ln

2-.12.(2024·山东济宁嘉祥县高三考前训练二)已知函数f(x)的导函数为f′(x),且对任意的实数x都有f′(x)=-f(x)(e是自然对数的底数),且f(0)=1,若关于x的不等式f(x)-m<0的解集中恰有两个整数,则实数m的取值范围是________.

答案(-e,0]

解析 ∵f′(x)=-f(x),∴[f′(x)+f(x)]ex=2x+3,即[f(x)ex]′=2x+3.设f(x)ex=x2+3x+c,∴f(x)=.∵f(0)=1,∴c=1,∴f(x)=,∴f′(x)==-.由f′(x)>0,得-2

由f′(x)<0,得x>1或x<-2,∴函数f(x)在(-2,1)上单调递增,在(-∞,-2)和(1,+∞)上单调递减,如图所示.

当x=-2时,f(x)min=-e2.又f(-1)=-e,f(-3)=e3,且x>0时,f(x)>0,由图象可知,要使不等式f(x)

三、解答题

13.(2024·江苏高考)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示,谷底O在水平线MN上、桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离h1(米)与D到OO′的距离a(米)之间满足关系式h1=a2;右侧曲线BO上任一点F到MN的距离h2(米)与F到OO′的距离b(米)之间满足关系式h2=-b3+6b.已知点B到OO′的距离为40米.

(1)求桥AB的长度;

(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元)、桥墩CD每米造价k(万元)(k>0).问O′E为多少米时,桥墩CD与EF的总造价最低?

解(1)由题意,得|O′A|2=-×403+6×40,∴|O′A|=80.∴|AB|=|O′A|+|O′B|=80+40=120.答:桥AB的长度为120米.

(2)设|O′E|=x,总造价为f(x)万元,|O′O|=×802=160,f(x)=k+k

=k(0<x<40),∴f′(x)=k.令f′(x)=0,得x=20(x=0舍去).

当0<x<20时,f′(x)<0;当20<x<40时,f′(x)>0,因此当x=20时,f(x)取最小值.

答:当O′E=20米时,桥墩CD与EF的总造价最低.14.(2024·四川成都石室中学一诊)设函数f(x)=x-sinx,x∈,g(x)=+cosx+2,m∈R.(1)证明:f(x)≤0;

(2)当x∈时,不等式g(x)≥恒成立,求m的取值范围.

解(1)证明:因为f′(x)=-cosx在x∈上单调递增,所以f′(x)∈,所以存在唯一x0∈,使得f′(x0)=0.当x∈(0,x0)时,f′(x)<0,f(x)单调递减;

当x∈时,f′(x)>0,f(x)单调递增.

所以f(x)max=max=0,所以f(x)≤0.(2)因为g′(x)=-sinx+m,令h(x)=-sinx+m,则h′(x)=-cosx+m.当m≥0时,m≤0,由(1)中的结论可知,-sinx≤0,所以g′(x)≤0,所以g(x)在x∈上单调递减,所以g(x)min=g=,满足题意.

当-0,所以存在唯一x1∈,使得h′(x1)=0.当x∈(0,x1)时,h′(x)<0,g′(x)单调递减;

当x∈时,h′(x)>0,g′(x)单调递增.

而g′(0)=-m>0,g′=0,所以存在唯一x2∈,使得g′(x2)=0.当x∈(0,x2)时,g′(x)>0,g(x)单调递增;

当x∈时,g′(x)<0,g(x)单调递减.

要使当0≤x≤时,g(x)≥恒成立,即⇒m≥,所以≤m<0.当m≤-,x∈时,h′(x)≤0,所以当x∈时,g′(x)单调递减,又g′=0,所以g′(x)≥0,所以g(x)在x∈上单调递增,所以g(x)≤g=,与题意矛盾.

综上,m的取值范围为.

本类热门