关于高中数学研究性学习的几点思考
研究性学习是学生在老师指导下,在学科领域或现实生活情境中,通过学生自主探究式的学习研究活动,在摄取已有知识或经验的基础上,经过同化、组合和探究,获得新的知识、能力和态度,发展创新素质的一种学习方式。研究性学习与社会实践、社区服务、劳动技术教育共同构成“综合实践活动”,作为必修课程列入《全日制普通高级中学课程计划》。
一.关于研究性学习
(一)研究性学习的特点
研究性学习具有开放性、探究性和实践性的特点,是师生共同探索新知的学习过程,是师生围绕着解决问题共同完成研究内容的确定、方法的选择以及为解决问题相互合作和交流的过程。1.开放性
研究性学习的内容不是特定的知识体系,而是来源于学生的学习生活和社会生活,立足于研究、解决学生关注的一些社会问题或其他问题,涉及的范围很广泛。它可能是某学科的,也可能是多学科综合、交叉的;可能偏重于实践方法,也可能偏重于理论研究方面。在同一主题下,由于个人兴趣、经验和研究活动的需要不同,研究视角的确定、研究目标的定位、切入口的选择、研究过程的设计、研究方法、手段的运用以及结果的表达等可以各不相同,具有很大的灵活性,为学习者、指导者发挥个性特长和才能提供了广阔的空间,从而形成一个开放的学习过程。
研究性学习,要求学生在确定课题后,通过媒体、网络、书刊等渠道,收集信息,加以筛选,开展社会调研,选用合理的研究方法,得出自己的结论,从而培养了学生的创新意识、科学精神和实践能力,它的最大特点是教学的开放性。
(1)教学内容是开放的。天文地理、古今中外,只要是学生感兴趣的题目,并有一定的可行性,都可作为研究课题。
(2)教学空间是开放的。强调理论联系实际,强调活动、体验的作用。学习地点不再限于教室、实验室和图书馆,要走出校门进行社会实践;实地勘察取证、走访专家、收集信息等等。
(3)学习方法、思维方式是开放的。针对不同目标,选择与之适应的学习形式,如问题探讨、课题设计、实验操作、社会调查等。要综合运用多门学科知识,分析问题、解决问题的能力 增强了,思维方式从平面到立体,从单一到多元,从静态发展到动态,从被动发展到主动,从封闭到开放。
(4)收集信息的渠道是开放的。不是单纯从课本和参考书获取信息,而是从讲座、因特网、媒体、人际交流等各种渠道收集信息。(5)师生关系是开放的。学生在研究中始终处于主动的地位,教师扮演着知道者、合作者、服务者的角色。提倡师生的辩论,鼓励学生敢于否定。2.探究性
在研究性学习过程中,学习的内容是在教师的指导下,学生自主确定的研究课题:学习的方式不是被动地记忆、理解教师传授的知识,而是敏锐地发现问题,主动地提出问题,积极地寻求解决问题的方法,探求结论的自主学习的过程。因此,研究性学习的课题,不宜由教师指定某个材料让学生理解、记忆,而应引导、归纳、呈现一些需要学习、探究的问题。这个问题可以由展示一个案例、介绍某些背景或创设一种情景引出,也可以直接提出。可以自教师提出,也可以引导学生自己发现和提出。要鼓励学生自主探究解决问题的方法并自己得出结论。3.实践性
研究性学习强调理论与社会、科学和生活实际的联系,特别关注环境问题、现代科技对当代生活的影响以及社会发展密切相关的重大问题。要引导学生关注现实生活,亲身参与社会实践性活动。同时研究性学习的设计与实施应为学生参与社会实践活动提供条件和可能。
(二)研究性学习的目标
研究性学习强调对所学知识、技能的实际运用,注重学习的过程和学生的实践与体验。需要注重以下几项具体目标: 1.获取亲身参与研究探索的体验
研究性学习强调学生通过自主参与类似于科学研究的学习活动,获得亲身体验,逐步形成善于质疑、乐于探究、勤于动手、努力求知的积极态度,产生积极情感,激发他们探索、创新的欲望。
2.培养发现问题和解决问题的能力
研究位学习通常围绕一个需要解决的实际问题展开。在学习的过程中,通过引导和鼓励学生自主地发现和提出问题,设计解决问题的方案,收集和分析资料,调查研究,得出结论并进行成果交流活动,引导学生应用已有的知识与经验,学习和掌握一些科学的研究方法,培养发现问题和解决问题的能力。3.培养收集、分析和利用信息的能力
研究性学习是一个开放的学习过程。在学习中,培养学生围绕研究主题主动收集、加工处理和利用信息的能力是非常重要的。通过研究性学习,要帮助学生学会利用多种有效手段、通过多种途径获取信息,学会整理与归纳信息,学会判断和识别信息的价值,并恰当的利用信息,以培养收集、分析和利用信息的能力。4.学会分享与合作 合作的意识和能力,是现代人所应具备的基本素质。研究位学习的开展将努力创设有利于人际沟通与合作的教育环境,使学生学会交流和分享研究的信息、创意及成果,发展乐于合作的团队精神。
5.培养科学态度和科学道德
在研究性学习的过程中,学生要认真、踏实的探究,实事求是地获得结论,尊重他人想法和成果,养成严谨、求实的科学态度和不断追求的进取精神,磨练不怕吃苦、勇于克服困难的意志品质。
6.培养对社会的责任心和使命感
在研究性学习的过程中,通过社会实践和调查研究,学生要深入了解科学对于自然、社会与人类的意义与价值,学会关心国家和社会的进步,学会关注人类与环境和谐发展,形成积极
二.对数学研究性学习的认识
数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。数学研究性学习更加关注学习过程。
用于数学研究性学习的材料应是建立在学生现有知识经验基础之上,能够激起学生解决问题的欲望,体现数学研究的思想方法和应用价值,有利于营造广阔的思维活动空间,使学生的思路越走越宽,思维的空间越来越大的一种研究性材料。
数学研究性学习的材料不仅仅是教师自己提供的,而且教师应鼓励学生通过思考、调查、查阅资料等方式概括出问题,甚至可以通过日常生活情景提出数学问题,进而提炼成研究性学习的材料。在研究性学习的过程中,学生是学习的主人,是问题的研究者和解决者,是主角,而教师则在适当的时候对学生给予帮助,起着组织和引导的作用。
数学研究性学习的评价不仅仅关心学习的结果,而且更重要的是关注学生参与学习的程度、思维的深度与广度,学生获得了哪些发展,并且特别注意学生有哪些创造性的见解,同时对学生的情感变化也应予以注意。为了使评价能够真实可靠,起到促进学生发展的目的,因此要充分尊重学生自己对自己的评价以及学生之间的相互评价。既要有定量的评价也要有定性的评价。
三.数学研究性学习课题的选择
数学研究性学习课题主要是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。要充分体现学生的自主活动和合作活动。研究性学习课题应以所学的数学知识为基础,并且密切结合生活和生产实际。新高中数学新教材将按《新大纲》的要求编入以下课题,供参考选用,当然教学时也可由师生自拟课题。提倡教师和学生自己提出问题。
新高中数学新教材研究性学习参考课题有六个:数列在分期付款中的应用,向量在物理中的应用,线性规划的实际应用,多面体欧拉定理的发现;杨辉三角,定积分在经济生活中的应用。其教学目标是:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力;(4)以研究报告或小论文等形式反映研究成果,学会交流。四.数学开放题与研究性学习
研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。
自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。
高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。例如高考数学题中,1993年的存在性问题,1994年的信息迁移题,1995年的结论探索性问题,1996的主观试题客观化,1997年填空题选择化,1998的条件开放题,1999年的结论和条件探索开放。
数学开放题的常见题型,按命题要素的发散倾向分为条件开放型、方法开放型、结论开放型、综合开放型;按解题目标的操作摸式分为规律探索型、量化设计型、分类讨论型、数学建模型、问题探求型、情景研究型;按信息过程的训练价值分为信息迁移型、知识巩固型、知识发散型;按问题答案的机构类型分为有限可列型、有限混沌型、无限离散型、无限连续型。
数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。
五.数学研究性学习中开放题的编制方法
无论是改造陈题,还是自创新题,编制数学开放题都要围绕使用开放题的目的进行,开放题应当随着使用目的和对象的变化而改变,应作为常规问题的补充,在研究型课程中适合学生研究性学习的开放题应具备起点低、入口宽、可拓展性强的特点。
用于研究性学习的开放题尽量能有利于解题者充分利用自己已有的数学知识和能力解决问题。编制的开放题应体现某一完整的数学思想方法,具有鲜明的数学特色,帮助解题者理解什么是数学,为什么要学习数学,以及怎样学习数学。开放题的编制不仅是教师的任务,它的编制本身也可以成为学生研究性学习的一项内容。数学开放题的编制方法:
1.以一定的知识结构为依托,从知识网络的交汇点寻找编制问题的切入点。能力是以知识为基础的,但掌握知识并不一定具备能力,以一定的知识为背景,编制出开放题,面对实际问题情景,学生可以分析问题情景,根据自己的理解构造具体的数学问题,然后尝试求解形成的数学问题并完成解答.2.以某一数学定理或公设为依据,编制开放题。数学中的定理或公设是数学学习的重要依据,中学生的学习特别是研究性学习常常是已有的定理并不需要学生掌握,或者是学生暂时还不知道,因此我们可以设计适当的问题情景,让学生进行探究,通过自己的努力去发现一般规律,体验研究的乐趣。
3.从封闭题出发引申出开放题。我们平时所用习题多是具有完备的条件和确定的答案,把它称之为封闭题,在原有封闭性问题基础上,使学生的思维向纵深发展,发散开去,能够启发学生有独创性的理解,就有可能形成开放题。在研究性学习中首先呈现给学生封闭题,解答完之后,进一步引导学生进行探究,如探究更一般的结论,探究更多的情形,或探究该结论成立的其它条件等。
4.为体现或重现某一数学研究方法编制开放题。数学家的研究方法蕴涵深刻的数学思想,在数学研究性学习中让学生亲身体验数学家的某些研究,做小科学家,点燃埋藏在学生心灵深处的智慧火种。以此为着眼点编制开放题,其教育价值是不言而喻的。
5.以实际问题为背景,体现数学的应用价值编制开放题。在实际问题中,条件往往不能完全确定,即条件的不确定性是自然形成的或是实际需要,其不确定性是合理的。如包装的外型,花圃的图案,工程的图纸这些是需要设计的,而由于考虑的角度不同,设计者的知识背景、价值判断不同,得出的方案也会不同。
以实际问题为背景,编制出设计类型的开放题,用于研究性学习,可以培养学生创新精神和实践能力。第19届国际数学教育心理会议的公开课问题:“在一块矩形地块上,欲辟出一部分作为花坛,要使花坛的面积为矩形面积的一半,请给出你的设计。”是一道公认的开放题,花圃的图案形状没有规定性的要求,解题者可以进行丰富的想象,充分展示几何图形的应用,这种以实际问题为背景编制的开放题往往有趣而富有吸引力。
将数学开放题作为数学研究性学习的一种载体,首先必须有适合的问题,如何编制能够用于研究性学习的开放题,这是值得研究的。在研究性学习的教学实践中,有充满活力和创造力的学生的参与,必将促进对这一问题认识的深化和提高。六.开展数学研究性学习的途径 1.在课堂教学中渗透研究性学习
求知欲是人们思考研究问题的内在动力,学生的求知欲越高,他的主动探索精神越强,就能主动积极进行思维,去寻找问题的答案。教师在教学中可采用引趣、激疑、悬念、讨论等多种途径,活跃课堂气氛,调动学生的学习热情和求知欲望,以帮助学生走出思维低谷。例如在讲授排列应用题时,我们的开场白是:现在我手上有6本不同的书,分给某6位同学,每人一本,共有多少种不同的分法?于是同学们议论纷纷,有的同学甚至拿着六本不同的书在试着分法,然而怎么也分不清。这时教师抓住这一有利时机指出:这一问题是这节课要解决的问题,只要掌握了解题方法问题很容易解决。这样尽管这节课的内容是一些繁杂枯燥的计算,学生在课堂上却是兴趣盎然。青少年学生求知欲望强,敢说,敢想,喜欢发表自己的意见,组织讨论能很好地发挥这种心理优势。
实践证明在遵循教学规律的基础上,采用生动活泼,富有启发、探索、创新的教学方法,充分激发学生的求知欲,培养学生的学习兴趣,是提高课堂教学效果和培养学生研究能力的重要途径。
2.社会实践与数学研究性学习
研究性学习强调理论与社会、科学和生活实际的联系,特别关注环境问题、现代科技对当代生活的影响以及社会发展密切相关的重大问题。要引导学生关注现实生活,亲身参与社会实践性活动。同时研究性学习的设计与实施应为学生参与社会实践活动提供条件和可能。七.数学研究性学习与数学教学 1.数学研究性学习在高中的定位
数学研究性学习是面向全体高中学生的必修课,而不是只为少数优秀学生开设的课程,它以激发学生主动探索的积极性,培养学生的创新精神为追求目标,鼓励学生介入数学学科前沿的研究,要求学生的研究结果有科学性,但并不强求每个学生的最后研究成果都必须独一无二。强调这样一种课程定位,有助于防治数学研究性学习变为新的数学学科竞赛。2.研究性学习与数学教学的关系
从初步开展数学研究性学习的实践情况看,凡是认真参加数学研究性学习的学生,基本上都没有影响数学学科内容的学习。个案显示,因为开展课题研究的需要,学生“用然后而知不足”,常常自觉地加深或拓宽了与课题相关的数学学科课程的学习,有的通过自己的亲身实践,更加加深了对数学学科课程的理解和热爱。因此,是否可以这样说。数学研究性学习和现有数学学科教学两者之间,不是一个反对一个,一个否定一个,而是互为补充,互相促进的关系。
总之,实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。设置研究性学习的目的在于改变学生以单纯地接受教师传授知识为主的学习方式,为学生构建开放的学习环境,提供多渠道获取知识、并将学到的知识加以综合应用于实践的机会,培养创新精神和实践能力。当前,受传统学科教学目标、内容、时间和教学方式的局限,在学科教学中普遍地实施研究性学习尚有一定的困难。因此,将研究性学习作为一项特别设立的教学活动作为必修课纳入《全日制普通高级中学课程计划(试验修订稿)》,这将会逐步推进研究性学习的开展,并从制度上保障这一活动的深化,满足学生在开放性的现实情境中主动探索研究、获得亲身体验、培养解决实际问题能力的需要。
中学生蕴藏着极为丰富和巨大的创造潜能,关键是我们的教育能否营造适合他们发展的环境,能否为他们创设发展的空间,提供更多发挥其创造潜能的机会。如果我们这样做了,我们的中学生对社会的回报将是无法估量的,让我们为孩子们提供更多的发展机会,使他们能够发挥自己的聪明才智,展示自己的才华。
关于高中数学研究性学习的一些思考
从2024年秋季开始,浙江省全面启动了深化普通高中课程改革,更加地强调了以学生发展为本,切实减轻学生过重的课业负担,提高学生学习质量和可持续发展水平,促进普通高中数学教学中知识与技能、过程与方法、情感态度价值观三维目标的有效达成。“研究性学习” 课程正是本着这一指导思想,作为必修课正式开始实施了。那么什么是研究性学习呢?我们作为普通高中的教师,该如何有效地区开展数学研究性学习课程呢?在此我想通过自己对研究性学生的理论的学习,并结合我校在高中数学新教材教学中开展研究性学习的实践谈点自己的思考。
(一)对高中数学研究性学习的几点认识
研究性学习是学生在教师指导下,从自然、社会和生活中选择和确定专题进行研究,以类似科学研究的方式主动地获取知识、应用知识、解决问题,并在研究过程中通过多种渠道主动地获取知识、应用知识、解决问题的学习活动。
研究性学习的目的就是要让学生主动地参与研究过程,获得亲身体验,培养其良好的科学态度和学会进行科学研究的方法,并不在乎能不能取得什么成果或发现。
研究性学习的方式是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实
践和相互交流为主要学习方式的学习研究活动。数学研究性学习的特点主要体现在它的开放性、研究性和实践性。它的功能在于能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。数学研究性学习更加关注学习过程。数学研究性学习的材料不是单纯从课本和参考书获取信息,而是从讲座、因特网、媒体等各种渠道收集信息,并鼓励学生通过思考、调查、查阅资料等方式概括出问题,甚至可以通过日常生活情景提出数学问题,进而提炼成研究性学习的材料。在研究性学习的过程中,学生才是学习的主人,是问题的研究者和解决者,是主角,而教师则在适当的时候对学生给予帮助,起着组织和引导的作用。
数学研究性学习的评价不仅仅关心学习的结果,而且更重要的是关注学生参与学习的程度、思维的深度与广度,学生获得了哪些发展,并且特别注意学生有哪些创造性的见解,同时对学生的情感变化也应予以注意。为了使评价能够真实可靠,起到促进学生发展的目的,因此要充分尊重学生自己对自己的评价以及学生之间的相互评价。既要有定量的评价也要有定性的评价。
(二)开展数学研究性学习的有效途径 1.在教学中开设研究性学习课
在数学新课程标准中,强调了数学是自然的、美的、有
用的,那么在平时的教学中该如何让学生感受到呢?所以很有必要开展专门的研究性学习课程,让学生自主参与类似于科学研究的学习活动,获得亲身体验。
数学研究性学习课题主要是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。要充分体现学生的自主活动和合作活动。研究性学习课题应以所学的数学知识为基础,并且密切结合生活和生产实际。新高中数学新教材将按《新大纲》的要求编入以下课题,供参考选用的研究性学习课题有六个:数列在分期付款中的应用,向量在物理中的应用,线性规划的实际应用,多面体欧拉定理的发现;杨辉三角,定积分在经济生活中的应用。当然教学时的课程主要是来自生活和实践,提倡教师和学生自己提出问题,自拟课题。教学内容和教学空间是开放的,天文地理、古今中外,只要是学生感兴趣的题目,并有一定的可行性,都可作为研究课题。
强调理论联系实际,强调活动、体验的作用,学习地点不再限于教室、实验室和图书馆,要走出校门进行社会实践;实地勘察取证、走访专家、收集信息等等。其教学目标是:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力;(4)以研究报告或小论文等形式反映研究成果,学会交流。
2.在课堂教学中渗透研究性学习
求知欲是人们思考研究问题的内在动力,学生的求知欲越高,他的主动探索精神越强,就能主动积极进行思维,去寻找问题的答案。教师在教学中可采用引趣、激疑、悬念、讨论等多种途径,活跃课堂气氛,调动学生的学习热情和求知欲望,以帮助学生走出思维低谷。讲授新课之前,我们可以先设置一些疑团,让学生产生悬念,急于要了解问题的结果,而使学生求知欲望大增。例如在讲授排列应用题时,我们的开场白是:现在我手上有6本不同的书,分给某6位同学,每人一本,共有多少种不同的分法?于是同学们议论纷纷,有的同学甚至拿着六本不同的书在试着分法,然而怎么也分不清。这时教师抓住这一有利时机指出:这一问题是这节课要解决的问题,只要掌握了解题方法问题很容易解决。这样尽管这节课的内容是一些繁杂枯燥的计算,学生在课堂上却是兴趣盎然。青少年学生求知欲望强,敢说,敢想,喜欢发表自己的意见,组织讨论能很好地发挥这种心理优势。实践证明在遵循教学规律的基础上,采用生动活泼,富有启发、探索、创新的教学方法,充分激发学生的求知欲,培养学生的学习兴趣,是提高课堂教学效果和培养学生研究能力的重要途径。
在课堂教学中强调数学开放题的研究学习
研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于
调动学生学习数学的积极性,有利于学生创造潜能的发挥。数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。
开放题是数学教学中的一种新题型,它是相对于传统的封闭题而言的。开放题的核心是培养学生的创造意识和创造能力,激发学生独立思考和创新的意识,这是一种新的教育理念的具体体现。为了使数学适应时代的需要,我们选择了数学开放题作为一个切入口,开放题的引入,促进了数学教育的开放化和个性化,从发现问题和解决问题中培养学生的创新精神和实践能力。关于开放题目前尚无确切的定论,通常是改变命题结构,改变设问方式,增强问题的探索性以及解决问题过程中的多角度思考,对命题赋予新的解释进而形成和发现新的问题。
4.数学研究性学习在社会实践中的应用
研究性学习强调理论与社会、科学和生活实际的联系,特别关注环境问题、现代科技对当代生活的影响以及社会发展密切相关的重大问题。要引导学生关注现实生活,亲身
参与社会实践性活动。同时研究性学习的设计与实施应为学生参与社会实践活动提供条件和可能。
学生对这个问题的进一步研究,无疑会激发其学习数学的主动性,且能开拓学生创造性思维能力,养成善于发现问题,独立思考的习惯。在数学研究性学习中,社会实践是重要的获取信息和研究素材的渠道,学生通过对事物的观察、了解并亲身参与取得了第一手资料,可以用所学的数学知识予以解决。
生活中处处充满着数学,处处留心皆数学。
我们早晨起床刷牙用的牙膏,细心的人会发现,牙膏的包装有大有小。其价格也不相同,你想过大小包装与其价格之间的关系吗?除了牙膏以外,还有商品都有大小包装之分,如饼干、瓜子、食油等等。你吃东西是,想过营养成份的搭配吗?你在上课时,想过坐在什么位置才能最清楚的看到黑板的问题吗?你在坐公共汽车遇到堵车时,想到尽快消除堵车的方案与数学知识有关吗?你乘船逆流而上发现东西掉进水中顺流而下时,想过假设将船掉头去追,什么时间能追上的问题吗?你在自行车修理铺里看到师傅在滚珠轴承装滚珠时,想过能装多少个吗?你在开灯关灯时,想过灯的位置与照明度的问题吗?你在开、关窗户时,想过窗户的面积与采光量的问题吗?你在听天气预报、台风警报、空气质量状况时想过他们是如何预报的吗?烈日下,你想过遮阳
棚搭建方式与遮挡太阳光线有关吗?平日作业、例题、习题及高考试题的推广和变式你想过吗?……
对于上述问题,有些你也许想过,有些你也许从未想过。这些问题都与数学有关!数学与生活是如此的息息相关,让我们发现并研究这些数学问题吧!相信你会其乐无穷。
(三)数学研究性学习与数学教学 1.数学研究性学习在高中的定位
数学研究性学习是面向全体高中学生的必修课,而不是只为少数优秀学生开设的课程,它以激发学生主动探索的积极性,培养学生的创新精神为追求目标,鼓励学生介入数学学科前沿的研究,要求学生的研究结果有科学性,但并不强求每个学生的最后研究成果都必须独一无二。强调这样一种课程定位,有助于防治数学研究性学习变为新的数学学科竞赛。
2.研究性学习与数学教学的关系
从初步开展数学研究性学习的实践情况看,凡是认真参加数学研究性学习的学生,基本上都没有影响数学学科内容的学习。个案显示,因为开展课题研究的需要,学生“用然后而知不足”,常常自觉地加深或拓宽了与课题相关的数学学科课程的学习,有的通过自己的亲身实践,更加加深了对数学学科课程的理解和热爱。因此,是否可以这样说。数学研究性学习和现有数学学科教学两者之间,不是一个反对
一个,一个否定一个,而是互为补充,互相促进的关系。
中学生蕴藏着极为丰富和巨大的创造潜能,关键是我们的教育能否营造适合他们发展的环境,能否为他们创设发展的空间,提供更多发挥其创造潜能的机会。如果我们这样做了,我们的中学生对社会的回报将是无法估量的,让我们为孩子们提供更多的发展机会,使他们能够发挥自己的聪明才智,展示自己的才华。目前,“研究性学习”仍属于初创、实验阶段,还存在许多方面的问题,同时也给我们广大教师提出了新的挑战,让我们共同走进“研究性学习”吧!
浅谈高中数学研究性学习的教学思考
【摘要】:研究性学习是培养学生创新精神和应用能力的一种全新而有效的教学模式,有利于调动学生的学习热情,有利于培养学生发现问题、提出问题、解决问题的能力,有利于激发学生的求知欲和进取精神。介绍了高中数学研究性学习的教学设计,主要包括:创设问题情境,引导学生开展研究性学习;探究数学开放题,进入研究性学习;结合生活实践,深入研究性学习等。
【关键词】: 高中数学 研究性学习教学思考
【正文】:
浅谈高中数学新课程教学中的研究性学习
研究性学习是学生在教师指导下,从自然、社会和生活中选择和确定专题进行研究,以类似科学研究的方式主动地获取知识、应用知识、解决问题,并在研究过程中通过多种渠道主动地获取知识、应用知识、解决问题的学习活动。
一、对数学研究性学习的认识
数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。数学研究性学习更加关注学习过程。
数学研究性学习的材料不仅仅是教师自己提供的,而且教师应鼓励学生通过思考、调查、查阅资料等方式概括出问题,甚至可以通过日常生活情景提出数学问题,进而提炼成研究性学习的材料。在研究性学习的过程中,学生是学习的主人,是问题的研究者和解决者,是主角,而教师则在适当的时候对学生给予帮助,起着组织和引导的作用。
二、开展数学研究性学习的途径
1.在课堂教学中渗透研究性学习
求知欲是人们思考研究问题的内在动力,学生的求知欲越高,他的主动探索精神越强,就能主动积极进行思维,去寻找问题的答案。教师在教学中可采用引趣、激疑、悬念、讨论等多种途径,活跃课堂气氛,调动学生的学习热情和求知欲望,以帮助学生走出思维低谷。例如在讲授排列应用题时,我的开场白是:现在我手上有6本不同的书,分给某6位同学,每人一本,共有多少种不同的分法?于是同学们议论纷纷,有的同学甚至拿着六本不同的书在试着分法,然而怎么也分不清。这时教师抓住这一有利时机指出:这一问题是这节课要解决的问题,只要掌
握了解题方法问题很容易解决。这样尽管这节课的内容是一些繁杂枯燥的计算,学生在课堂上却是兴趣盎然。青少年学生求知欲望强,敢说,敢想,喜欢发表自己的意见,组织讨论能很好地发挥这种心理优势。实践证明在遵循教学规律的基础上,采用生动活泼,富有启发、探索、创新的教学方法,充分激发学生的求知欲,培养学生的学习兴趣,是提高课堂教学效果和培养学生研究能力的重要途径。
2.数学开放题与数学研究性学习
数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。开放题的核心是培养学生的创造意识和创造能力,激发学生独立思考和创新的意识,这是一种新的教育理念的具体体现。为了使数学适应时代的需要,我们选择了数学开放题作为一个切入口,开放题的引入,促进了数学教育的开放化和个性化,从发现问题和解决问题中培养学生的创新精神和实践能力。关于开放题目前尚无确切的定论,通常是改变命题结构,改变设问方式,增强问题的探索性以及解决问题过程中的多角度思考,对命题赋予新的解释进而形成和发现新的问题。近两年高考题中也出现了开放题的“影子”,如题:“关于函数f(x)=4Sin(2x+π/3)(x R),有下列命题:由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;②y=f(x)的表达式可改写为y=4Cos(2x-π/6):y=f(x)的图象关于点(-π/6,0)对称;④y=f(x)的图象关于直线x=-π/6对称。其中正确的命题是──(注:把你认为正确的命题的序号都填上)”课本例4“作函数y=3Sin(2x+π/3)的简图。”可作为其原型。学生如果明白这些道理就会产生对问题开放的需求,逐步形成自觉的开放意识。又如2024年理19文20题 函数单调性的参数取值范围问题(既有条件开放又有结论的开放,条件上,对,是选择,还是选择 ?选择前者则得,以后的道路荆棘丛生,而选择后者则有,以后的道路一片光明;结论开放体现在结论分为两段,一段上可使函数单调,另一段上不单调,且证明不单调的方法是寻找反例);
有了开放的意识,加上方法指导,开放才会成为可能。开放问题的构建主要从两个方面进行,其一是问题本身的开放而获得新问题,其二是问题解法的开放而获得新思路。
3.社会实践与数学研究性学习
研究性学习强调理论与社会、科学和生活实际的联系,特别关注环境问题、现代科技对当代生活的影响以及社会发展密切相关的重大问题。要引导学生关注现实生活,亲身参与社会实践性活动。同时研究性学习的设计与实施应为学生参与社会实践活动提供条件和可能。以下数学问题均可作为研究性问题来进行讨论:
(1)购房贷款决策问题(通过调查银行利率,利税及房价决定哪种方式购房划算)
(2)对当地或国家近年来人口增长的情况调查,预测今后人口数量,给政府提出几点建议。
(3)气象学中的数学问题(温度、湿度、空气污染指数、臭氧层的变化)
(4)当地耕地面积的变化情况,预测今后的耕地面积。
(5)无盖盒子的最大容积问题
我们早晨起床刷牙用的牙膏,细心的人会发现,牙膏的包装有大有小。其价格也不相同,你想过大小包装与其价格之间的关系吗?除了牙膏以外,还有商品都有大小包装之分,如饼干、瓜子、食油等等。你吃东西是,想过营养成份的搭配吗?你在上课时,想过坐在什么位置才能最清楚的看到黑板的问题吗?你在坐公共汽车遇到堵车时,想到尽快消除堵车的方案与数学知识有关吗?你乘船逆流而上发现东西掉进水中顺流而下时,想过假设将船掉头去追,什么时间能追上的问题吗?你在自行车修理铺里看到师傅在滚珠轴承装滚珠时,想过能装多少个吗?你在开灯关灯时,想过灯的位置与照明度的问题吗?你在开、关窗户时,想过窗户的面积与采光量的问题吗?你在听天气预报、台风警报、空气质量状况时想过他们是如何预报的吗?烈日下,你想过遮阳棚搭建方式与遮挡太阳光线有关吗?平日作业、例题、习题及高考试题的推广和变式你想过吗?„„
对于上述问题,有些你也许想过,有些你也许从未想过。这些问题都与数学有关!数学与生活是如此的息息相关,让我们发现并研究这些数学问题吧!相信你会其乐无穷。
四、数学研究性学习与数学教学
1.数学研究性学习在高中的定位
数学研究性学习是面向全体高中学生的必修课,而不是只为少数优秀学生开设的课程,它以激发学生主动探索的积极性,培养学生的创新精神为追求目标,鼓励学生介入数学学科前沿的研究,要求学生的研究结果有科学性,但并不强求每个学生的最后研究成果都必须独一无二。强调这样一种课程定位,有助于防治数学研究性学习变为新的数学学科竞赛。
2.研究性学习与数学教学的关系
从初步开展数学研究性学习的实践情况看,凡是认真参加数学研究性学习的学生,基本上都没有影响数学学科内容的学习。个案显示,因为开展课题研究的需要,学生“用然后而知不足”,常常自觉地加深或拓宽了与课题相关的数学学科课程的学习,有的通过自己的亲身实践,更加加深了对数学学科课程的理解和热爱。因此,是否可以这样说。数学研究性学习和现有数学学科教学两者之间,不是一个反对一个,一个否定一个,而是互为补充,互相促进的关系。
总之,数学研究性学习的特点主要体现在它的开放性、研究性和实践性。它的功能在于能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。数学研究性学习更加关注学习过程。研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。
浅谈高中数学研究性学习的指导
广东省汕头市第一中学 汤 威
一、前言
研究性学习以学生的自主性、探究性学习为基础,从学生生活和社会生活中选择和确定研究专题,以小组合作或个人方式进行.通过“探究式”学习过程,获取直接经验,养成科学精神和科学态度,培养创新意识和实践能力,掌握基本的科学方法,提高综合运用所学知识解决实际问题的能力.
研究性学习课程在内容上要注重联系学生的学习生活实际,联系自然界、社会和人自身发展的实际问题,要有效地利用各种社会资源和自然资源,紧密结合各地区和学校的实际开展学习、研究.
笔者曾多年指导学生开展研究性学习活动,在指导过程中深刻感受到研究性学习是培养青少年创新精神和实践能力的有效载体.笔者愿意将指导过程中的体会与读者分享,同时通过对新课程教学的反思,谈谈研究性学习与新课程实施的思考.
二、指导学生开展研究性学习的关键环节
笔者就如何根据研究性学习课程的要求指导学生进行研究性学习的三个关键环节进行阐述.
2.1科学地选题
研究性学习课程要求学生自主选题,而对于刚接触研究性学习的高一学生要选好题是有难度的,因此指导教师从中应引导学生合理选题.为了既符合新课标要求,又能选好题,笔者认为选题应遵循新颖性和可行性的原则.新颖性就是选择别人没有做过的课题,课题不但要让别人有眼前一亮的感觉,更重要的是要有利于培养学生的创新思维和创新能力.可行性就是所选之题应是学生力所能及的,学生可以利用现有资源和现有知识水平能够解决的课题.笔者认为要选好题,必须引导学生学会观察生活,尽可能从学习生活中去选题,既可引发学生浓烈的研究兴趣,又可以让学生学会观察生活和体验生活,让课堂学习的知识能够应用到日常生产生活中去解决问题.譬如:笔者曾指导的三个课题分别为《城市公交车合理设站选址的数学模型》、《汕头市区交通信号灯设置的最优化问题》和《高中生文理选科的多元回归分析》这三个课题就非常贴切学生学习生活,而且较为新颖,难度不大.笔者认为选好题是成功的一半.
2.2智慧地指导
学生开展研究性学习大概有半年的时间,学生可以充分地做好各方面的计划,做好大量的实地调查和考察,可以去尝试很多想法.笔者认为指导教师的角色仍然是引导者和解难者.指导教师只需告诉学生每个阶段要做哪些工作,对研究的阶段性问题提出解决问题的建议.
指导教师切忌凡事亲历亲为,否则既剥夺了学生做研究的权利,不能让学生充分体验研究的过程,又可能让学生对教师过渡依赖,使教师陷于忙于应付的尴尬境地.譬如:笔者在指导《汕头市区交通信号灯设置的最优化问题》课题组进行研究时,开始阶段学生做这个课
题不知如何着手,此时指导教师作为引路人,应进行很具体的指导,让学生明确应做哪些具体工作,笔者要求学生先到汕头市区比较有代表性的十字路口进行实地调查和记录,一周后学生将此项工作完成得非常好,有些出乎意料.可见,在课题研究阶段,教师应充分相信学生,对学生的指导适可而止,过多的指导反而会束缚学生的创造性.
指导教师对学生指导应耐心细致,换位思考,正真融入到学生中去,与学生共同探讨问题,使学生感觉到你也是他们课题组的一员.笔者在指导课题组研究时,必定参加课题组召开的会议,期间会发现其实学生非常聪明,有许多“点子”让人耳目一新,在共同探讨的过程中师生都感受到了研究问题快乐,一个个问题的提出,一个个想法的产生、推翻、论证,都能感受思想的碰撞,创新思维的魅力.值得一提的是指导教师对一些问题不是很清楚时,应待查找有关资料弄清楚后,再告诉学生,切忌敷衍了事,否则有可能让学生的研究走入“死胡同”.
2.3精心地总结
最后的结题阶段是对研究课题的全面总结.除了整理有关资料外,还要形成论文,制作作品等.对于高一学生要撰写一篇有质量的论文确非易事,教师对学生指导应详细到位.笔者认为让学生参考一些优秀论文的结构先将课题研究形成文字,再由指导老师进行精心修改.譬如:数学建模方面的论文可以由摘要、问题提出、模型假设、符号说明、问题分析、模型建立与求解、模型的检验与改进等构成.笔者认为撰写论文还应注意几个问题:①语言必须简洁明了,尽量用精炼的语言对问题进行表述;②论文必须对“三性”即科学性、先进性和实用性进行重点论述;③论文的亮点必须在摘要中充分体现.
总之,指导教师在指导学生做研究性课题时,融入“做中学”科学教育理念,重点指导学生对课题的探究过程,体会课题研究的全过程,在研究过程中掌握分析问题、解决问题的基本方法,引导学生动脑筋思考问题,并想出一些新“点子”来解决问题,最终达成提高学生观察能力、思维能力、创造能力和实践能力的目的.
三、实施新课程背景下的研究性学习
众所周知,2024年秋季,广东省开始使用新课程的过渡教材,而研究性学习课程也开始成为学生的必修课程.笔者在新一轮的新课程教学中深刻感受到研究性学习是践行新课程理念的有效途径,开展研究性学习活动早于新课程的实施,因此研究性学习对于新课程的实施而言具有一定的试验性和导向性,在评价方面,研究性学习的评价是施行发展性评价,可以有效突破新课程评价的难点.下面笔者就数学学科新课程的实施与研究性学习的关系谈谈自己的看法.
3.1研究性学习是践行新课程理念的重要途径
《高中数学新课标》中指出倡导积极主动、勇于探索的学习方式,发展学生的数学应用意识,高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,应力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力.这些理念正是研究性学习中大力提倡的.笔者在指导学生开展研究性学习活动过程中很注重研究过程原始材料的规范与积累,学生是否真正参与到研究过程中,是否能充分利用数学的工具性解决日常生活中的问题(即建立数学模型),是否有一些创新的亮点.
3.2新课程的内容为学生进行课题研究提供了必要的知识
新课程中除了保留了原有的主干知识外,增加了有重要应用价值的数学知识和方法,例如:算法、数据处理、概率统计、导数及其应用等,这些知识可以在课题研究中得到广泛的应用.譬如:必修①第124页例6就是一个数据处理的典型例子;必修③中的《算法初步》为课题研究中用计算机解决问题提供了必要的基础;必修③《统计》使课题研究中进行科学的数据处理成为可能.有了这些知识,学生进行课题研究中的数据处理就不能再是简单的堆
砌,而应该应用这些知识进行科学的数据处理和分析,并得出合理的结论.笔者认为指导教师除了对这些知识有更为深入的了解,还应指导学生应用这些知识解决问题.
3.3研究性学习的评价对新课程的过程性评价有重要意义
实施新课程时,对学生的学习进行过程性评价是科学评价学生的难点,一直以来很难实施有效的、准确的、可操作性强的评价,有时甚至流于形式.随着研究性学习的开展和完善,研究性学习评价以“激励性”、“发展性”的评价方式对学生学习进行有效的过程性评价,一定程度上起到了导向性的作用,这正是由研究性学习注重研究过程的特点所决定的.随着新课程改革的不断深入,笔者相信新课程理念将会更好的促进研究性学习的开展,而通过开展研究性学习将有利于让广大师生更好的接受和践行新课程理念.
参考文献
[1]《综合实践活动:研究性学习》,广东高等教育出版社.[2]《探究的足迹》,汕头一中.2024.10.[3]《普通高中数学课程标准》,人民教育出版社.2024.4
[4]《新课程导学》,人民教育出版社.2024.7
[5]《数学教学与学业评价》,王林全,吴有昌,广东教育出版社.2024.10
一. 研究性学习
(一)研究性学习研究性学习是学生在教师指导下,从自然、社会和生活中选择和确定专题进行研究,以类似科学研究的方式主动地获取知识、应用知识、解决问题,并在研究过程中通过多种渠道主动地获取知识、应用知识、解决问题的学习活动。研究性学习与社会实践、社区服务、劳动技术教育共同构成“综合实践活动”,作为必修课程列入《全日制普通高级中学课程计划(试验修订稿)》。实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。设置研究性学习的目的在于改变学生以单纯地接受教师传授知识为主的学习方式,为学生构建开放的学习环境,提供多渠道获取知识、并将学到的知识加以综合应用于实践的机会,培养创新精神和实践能力。当前,受传统学科教学目标、内容、时间和教学方式的局限,在学科教学中普遍地实施研究性学习尚有一定的困难。因此,将研究性学习作为一项特别设立的教学活动作为必修课纳入《全日制普通高级中学课程计划(试验修订稿)》,这将会逐步推进研究性学习的开展,并从制度上保障这一活动的深化,满足学生在开放性的现实情境中主动探索研究、获得亲身体验、培养解决实际问题能力的需要。
(二)研究性学习的特点研究性学习具有开放性、探究性和实践性的特点,是师生共同探索新知的学习过程,是师生围绕着解决问题共同完成研究内容的确定、方法的选择以及为解决问题相互合作和交流的过程。1.开放性研究性学习的内容不是特定的知识体系,而是来源于学生的学习生活和社会生活,立足于研究、解决学生关注的一些社会问题或其他问题,涉及的范围很广泛。它可能是某学科的,也可能是多学科综合、交叉的;可能偏重于实践方法,也可能偏重于理论研究方面。在同一主题下,由于个人兴趣、经验和研究活动的需要不同,研究视角的确定、研究目标的定位、切人口的选择、研究过程的设计、研究方法、手段的运用以及结果的表达等可以各不相同,具有很大的灵活性,为学习者、指导者发挥个性特长和才能提供了广阔的空间,从而形成一个开放的学习过程。研究性学习,要求学生在确定课题后,通过媒体、网络、书刊等渠道,收集信息,加以筛选,开展社会调研,选用合理的研究方法,得出自己的结论,从而培养了学生的创新 意识、科学精神和实践能力,它的最大特点是教学的开放性。(1)教学内容是开放的。天文地理、古今中外,只要是学生感兴趣的题目,并有一定的可行性,都可作为研究课题。(2)教学空间是开放的。强调理论联系实际,强调活动、体验的作用。学习地点不再限于教室、实验室和图书馆,要走出校门进行社会实践;实地勘察取证、走访专家、收集信息等等。(3)学习方法、思维方式是开放的。针对不同目标,选择与之适应的学习形式,如问题探讨、课题设计、实验操作、社会调查等。要综合运用多门学科知识,分析问题、解决问题的能力增强了,思维方式从平面到立体,从单一到多元,从静态发展到动态,从被动发展到主动,从封闭到开放。(4)收集信息的渠道是开放的。不是单纯从课本和参考书获取信息,而是从讲座、因特网、媒体、人际交流等各种渠道收集信息。(5)师生关系是开放的。学生在研究中始终处于主动的地位,教师扮演着知道者、合作者、服务者的角色。提倡师生的辩论,鼓励学生敢于否定。2.探究性在研究性学习过程中,学习的内容是在教师的指导下,学生自主确定的研究课题:学习的方式不是被动地记忆、理解教师传授的知识,而是敏锐地发现问题,主动地提出问题,积极地寻求解决问题的方法,探求结论的自主学习的过程。因此,研究性学习的课题,不宜由教师指定某个材料让学生理解、记忆,而应引导、归纳、呈现一些需要学习、探究的问题。这个问题可以由展示一个案例、介绍某些背景或创设一种情景引出,也可以直接提出。可以自教师提出,也可以引导学生自己发现和提出。要鼓励学生自主探究解决问题的方法并自己得出结论。3.实践性研究性学习强调理论与社会、科学和生活实际的联系,特别关注环境问题、现代科技对当代生活的影响以及社会发展密切相关的重大问题。要引导学生关注现实生活,亲身参与社会实践性活动。同时研究性学习的设计与实施应为学生参与社会实践活动提供条件和可能。
(三)研究性学习的目标研究性学习强调对所学知识、技能的实际运用,注重学习的过程和学生的实践与体验。需要注重以下几项具体目标:1.获取亲身参与研究探索的体验研究性学习强调学生通过自主参与类似于科学研究的学习活动,获得亲身体验,逐步形成善于质疑、乐于探究、勤于动手、努力求知的积极态度,产生积极情感,激发他们探索、创新的欲望。2.培养发现问题和解决问题的能力研究位学习通常围绕一个需要解决的实际问题展开。在学习的过程中,通过引导和鼓励学生自主地发现和提出问题,设计解决问题的方案,收集和分析资料,调查研究,得出结论并进行成果交流活动,引导学生应用已有的知识与经验,学习和掌握一些科学的研究方法,培养发现问题和解决问题的能力。3.培养收集、分析和利用信息的能力研究性学习是一个开放的学习过程。在学习中,培养学生围绕研究主题主动收集、加工处理和利用信息的能力是非常重要的。通过研究性学习,要帮助学生学会利用多种有效手段、通过多种途径获取信息,学会整理与归纳信息,学会判断和识别信息的价值,并恰当的利用信息,以培养收集、分析和利用信息的能力。4.学会分享与合作合作的意识和能力,是现代人所应具备的基本素质。研究位学习的开展将努力创设有利于人际沟通与合作的教育环境,使学生学会交流和分享研究的信息、创意及成果,发展乐于合作的团队精神。5.培养科学态度和科学道德在研究性学习的过程中,学生要认真、踏实的探究,实事求是地获得结论,尊重他人想法和成果,养成严谨、求实的科学态度和不断追求的进取精神,磨练不怕吃苦、勇于克服困难的意志品质。6.培养对社会的责任心和使命感在研究性学习的过程中,通过社会实践和调查研究,学生要深入了解科学对于自然、社会与人类的意义与价值,学会关心国家和社会的进步,学会关注人类与环境和谐发展,形成积极的人生态度。二. 高中数学研究性学习
(一)数学研究性学习数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。数学研究性学习更加关注学习过程。用于数学研究性学习的材料应是建立在学生现有知识经验基础之上,能够激起学生解决问题的欲望,体现数学研究的思想方法和应用价值,有利于营造广阔的思维活动空间,使学生的思路越走越宽,思维的空间越来越大的一种研究性材料。数学研究性学习的材料不仅仅是教师自己提供的,而且教师应鼓励学生通过思考、调查、查阅资料等方式概括出问题,甚至可以通过日常生活情景提出数学问题,进而提炼成研究性学习的材料。在研究性学习的过程中,学生是学习的主人,是问题的研究者和解决者,是主角,而教师则在适当的时候对学生给予帮助,起着组织和引导的作用。数学研究性学习的评价不仅仅关心学习的结果,而且更重要的是关注学生参与学习的程度、思维的深度与广度,学生获得了哪些发展,并且特别注意学生有哪些创造性的见解,同时对学生的情感变化也应予以注意。为了使评价能够真实可靠,起到促进学生发展的目的,因此要充分尊重学生自己对自己的评价以及学生之间的相互评价。既要有定量的评价也要有定性的评价。
(二)数学研究性学习课题的选择
数学研究性学习课题主要是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。要充分体现学生的自主活动和合作活动。研究性学习课题应以所学的数学知识为基础,并且密切结合生活和生产实际。新高中数学新教材将按《新大纲》的要求编入以下课题,供参考选用,当然教学时也可以由师生自拟课题。提倡教师和学生自己提出问题。
新高中数学新教材研究性学习参考课题有六个:数列在分期付款中的应用,向量在物理中的应用,线性规划的实际应用,多面体欧拉定理的发现;杨辉三角,定积分在经济生活中的应用。其教学目标是:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力;(4)以研究报告或小论文等形式反映研究成果,学会交流。
(三)数学开放题与研究性学习研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。例如高考数学题中,1993年的存在性问题,1994年的信息迁移题,1995年的结论探索性问题,1996的主观试题客观化,1997年填空题选择化,1998的条件开放题,1999年的结论和条件探索开放。数学开放题的常见题型,按命题要素的发散倾向分为条件开放型、方法开放型、结论开放型、综合开放型;按解题目标的操作摸式分为规律探索型、量化设计型、分类讨论型、数学建模型、问题探求型、情景研究型;按信息过程的训练价值分为信息迁移型、知识巩固型、知识发散型;按问题答案的机构类型分为有限可列型、有限混沌型、无限离散型、无限连续型。数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。
(四)数学研究性学习中开放题的编制方法无论是改造陈题,还是自创新题,编制数学开放题都要围绕使用开放题的目的进行,开放题应当随着使用目的和对象的变化而改变,应作为常规问题的补充,在研究型课程中适合学生研究性学习的开放题应具备起点低、入口宽、可拓展性强的特点。用于研究性学习的开放题尽量能有利于解题者充分利用自己已有的数学知识和能力解决问题。编制的开放题应体现某一完整的数学思想方法,具有鲜明的数学特色,帮助解题者理解什么是数学,为什么要学习数学,以及怎样学习数学。开放题的编制不仅是教师的任务,它的编制本身也可以成为学生研究性学习的一项内容。数学开放题的编制方法:1.以一定的知识结构为依托,从知识网络的交汇点寻找编制问题的切入点。能力是以知识为基础的,但掌握知识并不一定具备能力,以一定的知识为背景,编制出开放题,面对实际问题情景,学生可以分析问题情景,根据自己的理解构造具体的数学问题,然后尝试求解形成的数学问题并完成解答.2.以某一数学定理或公设为依据,编制开放题。数学中的定理或公设是数学学习的重要依据,中学生的学习特别是研究性学习常常是已有的定理并不需要学生掌握,或者是学生暂时还不知道,因此我们可以设计适当的问题情景,让学生进行探究,通过自己的努力去发现一般规律,体验研究的乐趣。3.从封闭题出发引申出开放题。我们平时所用习题多是具有完备的条件和确定的答案,把它称之为封闭题,在原有封闭性问题基础上,使学生的思维向纵深发展,发散开去,能够启发学生有独创性的理解,就有可能形成开放题。在研究性学习中首先呈现给学生封闭题,解答完之后,进一步引导学生进行探究,如探究更一般的结论,探究更多的情形,或探究该结论成立的其它条件等等。4.为体现或重现某一数学研究方法编制开放题。数学家的研究方法蕴涵深刻的数学思想,在数学研究性学习中让学生亲身体验数学家的某些研究,做小科学家,点燃埋藏在学生心灵深处的智慧火种。以此为着眼点编制开放题,其教育价值是不言而喻的。5.以实际问题为背景,体现数学的应用价值编制开放题。在实际问题中,条件往往不能完全确定,即条件的不确定性是自然形成的或是实际需要,其不确定性是合理的。如包装的外型,花圃的图案,工程的图纸这些是需要设计的,而由于考虑的角度不同,设计者的知识背景、价值判断不同,得出的方案也会不同。以实际问题为背景,编制出设计类型的开放题,用于研究性学习,可以培养学生创新精神和实践能力。第19届国际数学教育心理会议的公开课问题:“在一块矩形地块上,欲辟出一部分作为花坛,要使花坛的面积为矩形面积的一半,请给出你的设计。”是一道公认的开放题,花圃的图案形状没有规定性的要求,解题者可以进行丰富的想象,充分展示几何图形的应用,这种以实际问题为背景编制的开放题往往有趣而富有吸引力。将数学开放题作为数学研究性学习的一种载体,首先必须有适合的问题,如何编制能够用于研究性学习的开放题,这是值得研究的。在研究性学习的教学实践中,有充满活力和创造力的学生的参与,必将促进对这一问题认识的深化和提高。摘自数学教育论坛
高中数学研究性学习课题集锦
一、课本知识延伸型
1、空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。
2、整理求定义域的规则及类型(特别是复合函数的类型)。
3、求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。
4、总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。
5、利用条件最值的几何背景进行命题演变,与命题分类。
6、回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。
7、探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。
8、在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。
9、把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论?
10、对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。
11、改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。
12、数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。
13、整理三角代换的的类型,及其能解决的哪几类问题。
14、一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。
15、三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。
16、一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。
17、概括使用均值不等式求最值问题中的“凑”的技巧,及拆项、添项的技巧。
18、观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。
19、探求一些著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。
20、整理常用的一些代换(三角代换、均值代换等),探索它在命题转化中的功能。
21、考虑均值不等式的变换,及改变之后的不等式的背景意义。
22、分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。
23、关于数学知识在物理上的应用探索
24、对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。
25、我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。
26、整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。
27、利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。
28、研究求轨迹问题中的坐标转移法与参数法的相互联系。
29、关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。
30、解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。
31、整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。
32、把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。
33、在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。
34、与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。
35、平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简
单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。
36、用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。
37、作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。
38、异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。
39、立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。
40、等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。
二、生活应用型(需要学生自己动手去有关部门搜集和整理原始资料)
1、银行存款利息和利税的调查
2、购房贷款决策问题
3、有关房子粉刷的预算
4、关于数学知识在物理上的应用探索
5、投资人寿保险和投资银行的分析比较
6、编程中的优化算法问题
7、余弦定理在日常生活中的应用
8、证券投资中的数学
9、环境规划与数学
10、如何计算一份试卷的难度与区分度
11、中国体育彩票中的数学问题
12、“开放型题”及其思维对策
13、中国电脑福利彩票中的数学问题
14、城镇/农村饮食构成及优化设计
15、如何安置军事侦察卫星
16、如何存款最合算
17、哪家超市最便宜
18、数学中的黄金分割
29、通讯网络收费调查统计
20、数学中的最优化问题
21、水库的来水量如何计算
22、计算器对运算能力影响
23、统计铜陵市月降水量
24、出租车车费的合理定价
25、购房贷款决策问题
26、设计未来的中学数学课堂
27、电视机荧屏曲线的拟合函数的分析
28、用计算机软件编制数学游戏
29、制作一个数学的练习与检查反馈软件
30、制作较为复杂的数据统计表格与分析软件
31、制作一个中学生数学网站
32、如何计算一份试卷的难度与区分度
33、多媒体辅助教学在数学教学中的作用调查
34、零件供应站(最省问题)
35、拍照取景角最大问题
36、当地耕地而积的变化情况,预测今后的耕地而积
37、衣服的价格、质地、品牌,左右消费者观念多少?
38、如何提高数学课堂效率
39、数学的发展历史
40、“开放型题”及其思维对策
Copyright © wanshu.net All Rights Reserved.版权所有
本网站内容仅供参考,内容侵权或错误投诉:640661@qq.com
工信部备案号:鲁ICP备2020038323号-1