工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 范文大全 > 二号文库

八年级数学《因式分解》说课稿

最新文章

第一篇:八年级数学《因式分解》说课稿

八年级数学《因式分解》说课稿

八年级数学《因式分解》说课稿

各位评委老师:

上午好!我是最后一号,非常不好意思,因为我让大家痛苦而充实的等到现在。我今天说课的课题是因式分解(板书课题§4.1因式分解)。我将主要从教材分析,教法分析,学法指导,教学过程及补充说明等五个方面来具体阐述这节课。下面开始我的说课。

一、教材分析

(一)教材的地位与作用

本节课是初中数学人教北师大版八年级下册第四章第一节的内容。在此之前,学生已经学习了整式乘法的相关知识,这为过渡到本节的学习起了铺垫作用。同时本节课也为后续知识一元二次方程求解方法的学习奠定一定的作用,因此在教材中本节课起着承上启下的过渡作用,而且本节课镶嵌着深刻的数形结合思想、类比思想,有利于学生思维的深化。

(二)教学目标

根据以上对教材的认识分析和学生的实际情况,结合数学新课标,我制定如下教学目标:

1、知识与技能

(1)了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系。

(3)培养和提高学生分析、解决问题的能力

2、过程与方法

通过因式分解的学习,让学生经历因式分解概念的探索过程,感知、了解数学概念形成的方法,培养学生发现问题,分析问题,解决问题的能力。

3、情感态度与价值观

鼓励学生积极主动的参与教学的整个过程,激发其求知的欲望;让学生体会数形结合的数学思想;领会数学的应用价值,培养学生善于观察、勇于质疑的优良品质。

(三)教学重点、难点

根据新课程标准,在吃透教材的基础上,我将本节课的重难点确立为因式分解的概念,通过多层次展示,多角度分析,多方面练习,以达到突出重点,突破难点的目的。

二、教法分析

数学是思维的体操,是一门以培养人的思维,发展人的思维为目的的重要学科,因此,在教学中,教师不仅要使学生“知其然”,更要使学生“知其所以然”。

我们在师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点和学生的实际情况,主要采用启发诱导、自主学习、合作探疑相结合等教学方法。

三、学法指导

现代的文盲不再是不识字的人,而是不会学习的人。数学课重在让学生逐渐学会自主学习,养成良好的学习习惯和规范的数学思维方式、方法。基于此,在学生的学习过程中,教师要对学生顺势启发、恰当点拨,以达到优化学生学习结构的目的。

结合教材、教法和学情,本节课借助多媒体课件、活页学案等辅助手段进行,以达到增加课堂直观效果,打造高效课堂的目的。

四、教学过程

结合《数学新课标》和学生已有的知识及生活经验,根据新课改的理念,本节课我主要设计以下几个教学环节:①温故知新(3分钟)②探究新知(25分钟)③基础过关(7分钟)④课堂小结(3分钟)⑤课堂自测(5分钟)⑥课堂质疑(2分钟)

接着,我再细说一下这几个环节

(一)温故知新

给出以下两个抢答题

这一环节的目的既达到温习乘法分配律,又起到预热学生思维的目的,以保证学生尽快进入课堂学习的角色。

(二)探究新知

1、因式分解的概念

(1)想一想

能被 整除吗?还能被哪些数整除?你是怎么得出来的?

(2)议一议

你能尝试把a3-a化成几个整式的乘积的形式吗?与同伴交流.(3)拼一拼

分别写出箭头两边的面积

_____________________________=___________________

第二篇:因式分解说课稿

初中数学说课稿:《因式分解复习课》

永昌中学 权力

各位评委、各位老师:

大家好!今天我说课的题目是:《因式分解复习》。我准备从如下几个方面展示:教材分析,教法、学法分析,教学程序设计,评价与反思。

一、教材分析

(一)教材的地位和作用

本章因式分解的内容是多项式因式分解中一部分最基本的知识和基本的方法,今天所复习的内容包括因式分解的有关概念,整式乘法与因式分解的区别和联系,因式分解的四种基本方法(即提公因式法、运用公式法、分组分解法、十字相乘法),及因式分解的一般步骤。

多项式因式分解是代数式中的重要内容,它与前面的整式及后一章的分式联系极为密切。因式分解的教学是在整式四则运算的基础上进行的,因式分解的理论依据就是多项式乘法的逆变形。这部分内容在分式的通分和约分有着直接的应用,在解方程、二次根式及将三角函数式进行恒等变形等方面有着广泛的应用,也是中考的一个重要考点,可以说因式分解是代数恒等变形的一个重要工具,所以这部分知识掌握的好坏直接影响着学生今后对代数知识的学习和应用。

(二)教学的目标和要求

从教材作用及适应中考要求我确定如下教学目标:

1、知识目标:A、理解因式分解的概念。B、掌握因式分解的方法及一般步骤。C、会对多项式进行因式分解。

2、能力目标:A、通过知识结构图的复习教学,培养学生归纳总结能力。B、通过因式分解综合练习,提高学生观察、分析能力。

3、德育目标:A、培养学生运用数学知识解决实际问题的意识。B、培养学生勇于探索、迎难而上的坚强品质。

(三)教学的重点和难点

重点:因式分解的四种基本方法的运用 难点:学生对分解因式的方法、技巧的掌握

二、教法与学法

因式分解是数学教学的难点之一,本堂课我采用知识点归纳因式分解的有关知识,使因式分解教学条理化、系统化,达到分散难点,最终突破难点的目的;因式分解的理论比较深,分解因式的方法多,变化技巧性较高,为了学生更好的掌握本节的内容,我采用“提供练习――引导观察――发现归纳”,让学生总结出分解因式的方法的对应关系,再通过适当的练习实践,及时消化巩固,让学生获取知识。在引导观察的过程中,启发学生发现问题、解决问题,调动学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。

三、教学过程分析

本节课通过知识点复习,达到单元回顾,知识梳理的目的。我采用知识点归纳分解因式的有关知识,使学生能够条理化、系统化地掌握分解因式。其中知识点一回顾了因式分解的基本概念。通过练习强调了因式分解与整式乘法之间的关系,使学生进一步明确因式分解的定义。

知识点二回顾因式分解的四种方法,为了帮学生及时巩固因式分解几种常用方法,习题的筛选主要从以下两方面考虑:1.巩固分解因式的概念2.巩固分解因式的方法的直接应用,也进一步感知分解因式中“整体”思想的应用。通过每种方法的题组练习,及时纠正学生出现的错误。然后对如何应用各种方法进行讲评,要使学生明确学习因式分解重在抓住关键,“提公因式法”关键是准确、彻底、随时随地;“运用公式法”关键是善于识别“平方项”;“分组分解法”关键在于分组。通过讲评,使学生在进行分解因式时,能较快检索到恰当方法。让学生在分解因式的时候,能做到“瞻前顾后”。即一般来讲,我们在分解因式时,先看式子中有没有公因式,再看能否利用公式法(平方差公式和完全平方公式),最后检查是否分解到不能再分解。学生对因式分解方法有了进了一步了解之后,让学生完成练习,本组练习题难度加大,学生有疑问,可借助小组的智慧,共同解决。

(检测)通过这几道题目检测学生对知识的掌握和理解程度。四.评价与反思

新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。

无论是教学环节设计,还是题目练习的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。

以上是我对《因式分解复习》一课的说课,不当之处请各位评委、老师批评指正,谢谢。

第三篇:八年级数学14章因式分解教案

复习:

一、去括号法则:a+(b+c)=a+b+c a-(b+c)=a-b-c 添括号法则:a+b+c=a+(b+c)a+b+c=a-(-b-c)

二、乘法公式的深化应用.

例:计算(1)(x+2y-3)(x-2y+3)(2)(a+b+c)(3)(x+3)2-x2

(4)(x+5)2-(x-2)(x-3)

423534(5)28xy÷7x(6)-5abc÷15ab

23243 42(7)(2xy)·(-7xy)÷12xy(8)5(2a+b)÷(2a+b)

§15.5.1 提公因式法(1)20×(-3)+60×(-3)(2)101-9922(3)57+2×57×43+43(学生在运算与交流中积累解题经验,复习乘法公式)解:(1)20×(-3)+60×(-3)

=20×9+60×-3 =180-180=0 2 或20×(-3)+60×(-3)=20×(-3)+20×3×(-3)=20×(-3)(-3+3)=-60×0=0.(2)101-99=(101+99)(101-99)

=200×2=400 22(3)57+2×57×43+4322 =(57+43)=100 =10000.

在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简单易行,类似地,在式的变形中,•有时也需要将一个多项式写成几个整式的乘积形式,这就是我们从今天开始要探究的内容──因式分解.

把下列多项式写成整式的乘积的形式(1)x+x=_________ 2(2)x-1=_________(3)am+bm+cm=__________ 根据整式乘法和逆向思维原理,可以做如下计算:(1)x+x=x(x+1)(2)x-1=(x+1)(x-1)

(3)am+bm+cm=m(a+b+c)

[师]像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.

可以看出因式分解是整式乘法的相反方向的变形,所以需要逆向思维.

再观察上面的第(1)题和第(3)题,你能发现什么特点.

我发现(1)中各项都有一个公共的因式x,(2)中各项都有一个公共因式m,是不是可以叫这些公共因式为各自多项式的公因式呢?

因为ma+mb+mc=m(a+b+c).

于是就把ma+mb+mc分解成两个因式乘积的形式,•其中一个因式是各项的公因式m,另一个因式a+b+c是ma+mb+mc除以m所得的商,•像这种分解因式的方法叫做提公因式法. 2.例题教学,运用新知. [例1]把8ab-12abc分解因式.

[例2]把2a(b+c)-3(b+c)分解因式. [例3]把3x-6xy+x分解因式.

[例4]把-4a+16a-18a分解因式.

[例5]把6(x-2)+x(2-x)分解因式.

323 [例1]分析:先找出8ab与12abc的公因式,再提出公因式.•我们看这两项的系

323数8与12,它们的最大公约数是4,两项的字母部分ab与abc都含有字母a和b.其中a

22的最低次数是1,b的最低次数是2.我们选定4ab为要提出的公因式.提出公因式4ab后,2•另一个因式2a+3bc就不再有公因式了.

32222222 解:8ab+12abc=4ab·2a+4ab·3bc=4ab(2a+3bc).

总结:提取公因式后,要满足另一个因式不再有公因式才行.可以概括为一句话:括号里面分到“底”,这里的底是不能再分解为止. [例2]分析:(b+c)是这两个式子的公因式,可以直接提出.这就是说,公因式可以是单项式,也可以是多项式,是多项式时应整体考虑直接提出.

解:2a(b+c)-3(b+c)=(b+c)(2a-3). [例3]解:3x-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1). 注意:x(3x-6y+1)=3x-6xy+x,而x(3x-6y)=3x-6xy,•所以原多项式因式分解为x(3x-6xy+1)而不是x(3x-6y).这就是说,1作为项的系数,通常可以省略,•但如果单独成一项时,它在因式分解时不能漏掉,可以概括为:某项提出莫漏1.

[例4]解:-4a+16a-18a 32 =-(4a-16a+18a)=-2a(2a-8a+9)

注意:如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.在提出“-”号时,多项式的各项都要变号.可以用一句话概括:首项有负常提负.

[例5]分析:先找6(x-2)与x(2-x)的公因式,再提取公因式.因为2-x=-(x-2),•所以x-2即公因式.

解:6(x-2)+x(2-x)

=6(x-2)-x(x-2)=(x-2)(6-x).

总结:有时多项式的各项从表面上看没有公因式,但将其中一些项变形后,•但可以发现公因式,然后再提取公因式.

§15.5.2.1 公式法

(一)问题1:你能叙述多项式因式分解的定义吗?

问题2:运用提公因式法分解因式的步骤是什么? 问题3:你能将a-b分解因式吗?你是如何思考的?

1.多项式的因式分解其实是整式乘法的逆用,•也就是把一个多项式化成了几个整式的积的形式.

2.提公因式法的第一步是观察多项式各项是否有公因式,如果没有公因式,•就不能使用提公因式法对该多项式进行因式分解.

3.对不能使用提公因式法分解因式的多项式,不能说不能进行因式分解. 要将a-b进行因式分解,可以发现它没有公因式,•不能用提公因式法分解因式,但我们还可以发现这个多项式是两个数的平方差形式,所以用平方差公式可以写成如下形式: 323 a-b=(a+b)(a-b).

多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结果,这种分解因式的方法称为运用公式法.今天我们就来学习利用平方差公式分解因式.

观察平方差公式:a-b=(a+b)(a-b)的项、指数、符号有什么特点?

(1)左边是二项式,每项都是平方的形式,两项的符号相反.

(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差.

(3)在乘法公式中,“平方差”是计算结果,而在分解因式,•“平方差”是得分解因式的多项式.

由此可知如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.

[做下列填空题的作用在于训练学生迅速地把一个单项式写成平方的形式.•也可以对积

22的乘方、幂的乘方运算法则给予一定时间的复习,避免出现4a=(4a)•这一类错误] 填空:(1)4a=();

(2)22422b=(); 94(3)0.16a=();

222(4)1.21ab=();

142x=(); 44422(6)5xy=().(5)2 例题解析:

[例1]分解因式

222443(1)4x-9(2)(x+p)-(x+q)(1)x-y(2)ab-ab 可放手让学生独立思考求解,然后师生共同讨论,纠正学生解题中可能发生的错误,并对各种错误进行评析.

[师生共析] [例1](1)

中的2x,(2)中的x+p•相当于平方差公式中的a;(1)中的3,(2)中的x+q相当于平方差中的b,进而说明公式中的a与b•可以表示一个数,也可以表示一个单项式,甚至是多项式,渗透换元的思想方法)

442222 [例2](1)x-y可以写成(x)-(y)的形式,这样就可以利用平方差公式进行因

2222式分解了.但分解到(x+y)(x-y)后,部分学生会不继续分解因式,针对这种情况,可以回顾因式分解定义后,•让学生理解因式分解的要求是必须进行到多项式的每一个因式都不能再分解为止.(2)不能直接利用平方差公式分解因式,但通过观察可以发现ab-ab•有公因式ab,应先提出公因式,再进一步分解.

解:(1)x-y2222 =(x+y)(x-y)=(x+y)(x+y)(x-y).

32(2)ab-ab=ab(a-1)=ab(a+1)(a-1).

把下列各式分解因式 2(1)36(x+y)-49(x-y)(2)(x-1)+b(1-x)

(xy)2(xy)2(3)(x+x+1)-1(4)-.

4422

§15.5.3.2 公式法

(二)问题1:根据学习用平方差公式分解因式的经验和方法,•分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?

问题2:把下列各式分解因式. 22(1)a+2ab+b(2)a-2ab+b 将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.

两个数的平方和,加上(或减去)这两数的积的2倍,•等于这两个数的和(或差)的平方.

22222 问题2其实就是完全平方公式的符号表示.即:a+2ab+b=(a+b),a-2ab+b(a-b)2.

[师]今天我们就来研究用完全平方公式分解因式.

下列各式是不是完全平方式?(1)a-4a+4 22(2)x+4x+4y(3)4a+2ab+22 212 b4(4)a-ab+b2(5)x-6x-9 2(6)a+a+0.25 2222 结果:(1)a-4a+4=a-2×2·a+2=(a-2)(3)4a+2ab+2212111222 b=(2a)+2×2a·b+(b)=(2a+b)42222

2(6)a+a+0.25=a+2·a·0.5+0.5=(a+0.5)[例1]分解因式:

222(1)16x+24x+9(2)-x+4xy-4y222(1)3ax+6axy+3ay(2)(a+b)-12(a+b)+36

2222 [例1](1)分析:在(1)中,16x=(4x),9=3,24x=2·4x·3,所以16x+12x+9是一个完全平方式,即

解:(1)16x+24x+9 22 =(4x)+2·4x·3+32 =(4x+3).

(2)分析:在(2)中两个平方项前有负号,所以应考虑添括号法则将负号提出,然后

22再考虑完全平方公式,因为4y=(2y),4xy=2·x·2y.

所以: 2

解:-x+4xy-4y=-(x-4xy+4y)=-[x-2·x·2y+(2y)]2 =-(x-2y).

练一练:

把下列多项式分解因式:

222(1)6a-a-9;(2)-8ab-16a-b;

23222(3)2a-a-a;(4)4x+20(x-x)+25(1-x)

第四篇:八年级下册因式分解

第二章因式分解练习题

1.因式分解:9a24b24bcc2_________

2.分解因式:a3c4a2bc4ab2c_________

3.若|x2|x2xy1y20,则x=_______,y=________ 4

4.若a99,b98,则a22abb25a5b_________

5.计算12798.0125.0125.4798.________

6.若ab5,ab14,则a3a2bab2b3__________

mm1(a)a(a)7.的值是()

m1D.(1)A.1B.-1C.0

228.若n为任意整数,(n11)n的值总可以被k整除,则k等于()

A.11B.22C.11或22D.11的倍数

x3x21x4229、把下列各式分解因式:(1)x44xy4y(2)

32x(x1)x(x1)x(x1)x1(5)

24.计算:

99832222004220242024 12()()2101210020043200422024

25.已知mn3,mn2,求m3nm2n2mn3的值。(10分)3

第五篇:关于八年级数学说课稿

一次函数说课稿各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:

一、说教材

(一)本节内容在教材中的地位和作用

本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)说教学目标

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识技能:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

3、掌握一次函数的性质.数学思考:

1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度:

1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)说教学重点难点

教学重点:一次函数的图象和性质。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

二、说教法学法

1、教学方法

依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导

做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。

1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

三、说教学程序设计

(一)、创设情境,导入新课

活动1:观察:

展示学生作图作品(书P28例2),强调列表及图象上的点的对应关系。

课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。

目的有四:

1、根据学生的年龄特征:都具有强烈的表现自我的心理。大部分学生盼望在课上教师能展示自己的作品,这样将最大限度地调动学生的学习积极性,其作图会比平时更规范更准确;也可以说完成了变教师课上被动讲为学生课外主动学习的过程,这样以来学生的所获更多,印象更深;

2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。

3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

4、令教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动

1、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现“直线y=--6x+5与坐标轴交点”并思考:一次函数y=--6x+5又如何作出图象?

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动2:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)

目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

(三)课堂小结

引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受.目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

(四)作业布置

加强“教、学”反思,进一步提高“教与学”效果。

四、说板书设计

采用了如下板书,要点突出,简明清晰。

一次函数

正比例函数图像的画法:确定两点为(0,0)和(1,K)一次函数选择的两点为:(0,k)和(-bk,0)

五、说课后小结

实践证明,在教学中,充分利用教学方法的优势,为学生创造一个好的学习氛围,来引导学生发现问题、分析问题从而解决问题。多媒体课件支撑着整个教学过程,令学生在一个生动有趣的课堂上,能愉快地接受知识

本类热门