工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 范文大全 > 二号文库

相似三角形小结与复习

最新文章

第一篇:相似三角形小结与复习

相似三角形小结与复习

教学目标

1.对全章知识有一个系统的认识,掌握知识的结构和内在联系.2.利用基本图形结构的形成过程,掌握本章的重点:平行线分线段成比例定理和相似三角形的判定及性质定理.3.通过例题分析,系统总结本章常用的数学思想方法,提高分析问题和解决问题的能力.教学重点和难点

重点是掌握本章的主要概念、定理及数学方法.难点是灵活运用以上知识,提高解题能力.教学过程设计

一、掌握本章知识结构

具体内容见课本第258页内容提要.二、按照“特殊——一般——特殊”的认识规律,理解本章的基本图形的形成、变化及发展 过程,把握本章的两个重点

1.平行线分线段成比例定理所对应的基本图形(如图5-123).要求:

(1)用平行线分线段成比例定理及推论证明比例式,会分线段成已知比;(2)对图5-123(a),(b)要求会用比例式证明两直线平行.2.相似三角形所对应的基本图形.(1)类比推广:从特殊到一般,如图5-124;

(2)从一般到特殊:如图5-125.要求:用对比的方法掌握相似三角形和相似多边形的定义及性质,系统总结相似三角形的判 定方法和使用范围,尤其注意利用中间相似三角形的方法.3.熟悉一些常用的基本图形中的典型结论有助于探求解题思路.(1)在图5-125(a)中的相似三角形及相似比、面积比;

(2)在图5-125(b)中有公边共角的两个相似三角形:公边的平方等于两相似三角形落在一条直线上的两边之积;(3)在图5-125(d)中射影定理及面积关系等常用的乘积式.三、通过例题分析,系统总结本章常用的数学思想及方法

例1 已知:的值.分析:已知等比条件时常有以下几种求值方法:(1)设比值为k;(2)比例的基本性质;

(3)方程的思想,用其中一个字母表示其他字母.解法一 由则(a+b):(b-c)=25:3.,得a:b=2:3,b:c=5:4,即a:b:c=10:15:12.设a=10k,b=15k,c=12k, 解法二 ∵

∴, ∴ 解法三 ∵,∴a=, ∴

例2 已知:如图5-126(a),在梯形ABCD中,AD∥BC,对角线交于O点,过O作EF∥BC,分别交AB,DC于E,F.求证:(1)OE=OF;(2);(3)若MN为梯形中位线,求证AF∥MC.分析:

(1)利用比例证明两线段相等的方法.①若,a=c(或b=d或a=b),则b=d(或a=c或c=d);

②若,则a=b(只适用于线段,对实数不成立);

③若,a=a′,b=b′,c=c′,则d=d′.(2)利用平行线证明比例式及换中间比的方法.(3)证明时,可将其转化为“”类型后:

①化为直接求出各比值,或可用中间比求出各比值再相加,证明比值的和为1;

②直接通分或移项转化为证明四条线段成比例.(4)可用分析法证明第(3)题,并延长两腰将梯形问题转化为三角形问题.延长BA,CD交于S,AF∥MC

∴ AF∥MC成立.(5)用运动的观点将问题进行推广.若直线EF平行移动后不过点O,分别交AB,BD,AC,CD于E,O1,O2,F,如图5-126(b),O1F 与O2F是否相等?为什么?(6)其它常用的推广问题的方法有:类比、从特殊到一般等.例3 已知:如图5-127,在ΔABC中,AB=AC,D为BC中点,DE⊥AC于E,F为DE中点,BE交AD于N,AF交BE于M.求证:AF⊥BE.分析:

(1)分解基本图形探求解题思路.(2)总结利用相似三角形的性质证明两角相等,进一步证明两直线位置关系(平行、垂直等)的方法,利用ΔADE∽ΔDCE得到

结合中点定义得到得到AF⊥BE.,结合∠3=∠C,得到ΔBEC∽ΔAFD,因此∠1=∠2.进一步可

(3)总结证明四条线段成比例的常用方法:①比例的定义;②平行线分线段成比例定理;③ 三角形相似的预备定理;④直接利用相似三角形的性质;⑤利用中间比等量代换;⑥利用面 积关系.例4 已知:如图5-128,RtΔABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求证:(1)CD3=AAE·BF·AB;(2)BC2:AC2=CE:EA;(3)BC3:AC3=BF:AE.分析:

(1)掌握基本图形“RtΔABC,∠C=90°,CD⊥AB于D”中的常用结论.①勾股定理:AC+BC=AB.②面积公式:AC·BC=AB·CD.③三个比例中项:AC=AD·AB,BC=BD·BA,CD=DA·DB.2

22222

(2)灵活运用以上结论,并掌握恒等变形的各种方法,是解决此类问题的基本途径,如等式 两边都乘或除以某项,都平方、立方,或两等式相乘等.(3)学习三类问题的常见的思考方法,并熟悉常用的恒等变形方法.①证明a型:先得到a=bc型,再两边乘方,求出a来,进行化简(证法一).或在a=bc两边乘以同一线段a,再进行化简(证法二).②证明a:b=c:d型问题的常用方法: 22

3242(ⅰ)先证,再利用中间比证明(ⅱ)先证再两边平方:,然后设法将右边降次,得

(ⅲ)先分别求出,两式相乘得,再将右边化简.③证明a3:b3=c:d型问题的常用方法:

(ⅰ)先用有关定理求出,再通过代换变形实现;

(ⅱ)先证,两边平方或立方,再通过代换实现;

(ⅲ)先分别求出第(1)题:

证法一 ∵ CD=AD·BD, 2,然后相乘并化简:

∴ CD=AD·BD=(AE·AC)·(BF·BC)=(AE·BF)(AC·BC)

=(AE·BF)·(AB·CD).422证法二 ∵ CD=AD·BD,CD=2

∴ CD=AD·BD·3=

=AE·BF·AB.第(2)题:

证法一 ∵,利用ΔBDF∽ΔDAE,证得,命 题得证.证法二 由证法三 ∵ ΔBCD∽ΔCAD,∴(相似三角形对应高的比等于对应边的比)∵ DE∥BC,∴第(3)题: ,∴

证法一 ∵, ∴,∴

证法二: ΔADC∽ΔCDB,∴

∴·

证法三 ∵, ∴

四、师生共同小结

在学生思考总结的基础上,教师归纳:

1.本章重点内容及基本图形.2.本章重要的解题方法、数学思想方法及研究问题的方法.五、作业

课本第261~265页复习题五中选取.补充题:

1.利用相似三角形的性质计算.已知:如图5-129,在RtΔABC,中∠ACB=90°,E为AB上一点,过E作ED∥BC交AC于D,过D作DF⊥AC交AB于F.若EF:FB=2:1,ED=2,CD=,求FB的长.(答:2)

2.证明相似三角形的方法.如图5-130,在ΔABC,中∠C=60°,AD,BE是ΔABC的高,DF为ΔABD的中线.求证:DE=DF.(提示:证明ΔCDE∽ΔCAB,得到.)3.已知:如图5-131,ΔABC内一点O,过O分别作各边的平行线DE∥BC,FG∥AB,HK∥AC.求证:

(1)

(2)设SΔOEF=S1,SΔODH=S2,SΔOGK=S3,SΔABC=S.则4.构造相似三角形来解决问题.(1)已知:如图5-132,ΔABC中,点E为BC中点,点D在AC上,AC=1,∠BAC=60°∠ABC=

100°,∠DEC=80°.求SΔABC+2SΔCDE;(答:)(提示:延长AB至F,使F=AC.作∠BCF平分线交AF于G.—

(2)已知:如图5-133,在ΔABC中,∠A:∠B:∠C=1:2:4.求证:.(提示:把变形为,进一步变形为.设法

构造相似三角形,使其对应边的比分别为,作AE=AC,交BC延长线于E,延长AB至D,使BD=AC.)

5.构造基本图形(平行线分线段成比例定理).已知:如图5-134,ΔABC的三边BC,CA,AB上有点D,E,F.若AD,BE,CF三线交于一点O.求证:.(塞瓦定理)

课堂教学设计说明 本教案需用1课时完成.本节例2在三角形相似的判定(四)中出现过,如果学生已经掌握,教师可在这节复习课中选 取补充题2或其它题目说明利用比例证明线段相等的方法.

第二篇:八年级数学相似三角形小结与复习

中考网 www.feisuxs 章相似三角形小结与复习[内容]

教学目标

1.对全章知识有一个系统的认识,掌握知识的结构和内在联系.2.利用基本图形结构的形成过程,掌握本章的重点:平行线分线段成比例定理和相似三角形 的判定及性质定理.3.通过例题分析,系统总结本章常用的数学思想方法,提高分析问题和解决问题的能力.教学重点和难点

重点是掌握本章的主要概念、定理及数学方法.难点是灵活运用以上知识,提高解题能力.教学过程设计

一、掌握本章知识结构

具体内容见课本第258页内容提要.二、按照“特殊——一般——特殊”的认识规律,理解本章的基本图形的形成、变化及发展 过程,把握本章的两个重点

1.平行线分线段成比例定理所对应的基本图形(如图5-123).要求:

中考网 www.feisuxs

中考网 www.feisuxs(1)用平行线分线段成比例定理及推论证明比例式,会分线段成已知比;(2)对图5-123(a),(b)要求会用比例式证明两直线平行.2.相似三角形所对应的基本图形.(1)类比推广:从特殊到一般,如图5-124;

(2)从一般到特殊:如图5-125.要求:用对比的方法掌握相似三角形和相似多边形的定义及性质,系统总结相似三角形的判 定方法和使用范围,尤其注意利用中间相似三角形的方法.3.熟悉一些常用的基本图形中的典型结论有助于探求解题思路.(1)在图5-125(a)中的相似三角形及相似比、面积比;

(2)在图5-125(b)中有公边共角的两个相似三角形:公边的平方等于两相似三角形落在一条直线上的两边之积;

(3)在图5-125(d)中射影定理及面积关系等常用的乘积式.三、通过例题分析,系统总结本章常用的数学思想及方法

abbcab,.求:bc的值.例1 已知:2354分析:已知等比条件时常有以下几种求值方法:

(1)设比值为k;(2)比例的基本性质;

(3)方程的思想,用其中一个字母表示其他字母.abbc及54,得a:b=2:3,b:c=5:4,即a:b:c=10:15:12.设解法一

由23a=10k,b=15k,c=12k,中考网 www.feisuxs

中考网 www.feisuxs 则(a+b):(b-c)=25:3.a2b5,b3c4 解法二 ∵ab5bc1ab25.b3b5bc

3∴, ∴abb524b,a,c3b5, 解法三 ∵23c4,∴a=2bbab35125bcb4b3535 ∴

例2 已知:如图5-126(a),在梯形ABCD中,AD∥BC,对角线交于O点,过O作

112EF;(3)若MN为梯形中EF∥BC,分别交AB,DC于E,F.求证:(1)OE=OF;(2)ADBC位线,求证AF∥MC.分析:

(1)利用比例证明两线段相等的方法.acdd,a=c(或b=d或a=b),则b=d(或a=c或c=d); ①若abda,则a=b(只适用于线段,对实数不成立); ②若aca'c'''dddd,a=a′,b=b′,c=c′,则d=d′.③若,(2)利用平行线证明比例式及换中间比的方法.中考网 www.feisuxs

中考网 www.feisuxs 112111EF时,可将其转化为“abc”类型后:(3)证明ADBCcc1ab①化为直接求出各比值,或可用中间比求出各比值再相加,证明比值的和为1;

②直接通分或移项转化为证明四条线段成比例.(4)可用分析法证明第(3)题,并延长两腰将梯形问题转化为三角形问题.延长BA,CD交于S,AF∥MC

∴ AF∥MC成立.(5)用运动的观点将问题进行推广.若直线EF平行移动后不过点O,分别交AB,BD,AC,CD于E,O1,O2,F,如图5-126(b),O1F 与O2F是否相等?为什么?(6)其它常用的推广问题的方法有:类比、从特殊到一般等.例3 已知:如图5-127,在ΔABC中,AB=AC,D为BC中点,DE⊥AC于E,F为DE中点,BE交AD于N,AF交BE于M.求证:AF⊥BE.分析:

中考网 www.feisuxs

中考网 www.feisuxs

(1)分解基本图形探求解题思路.(2)总结利用相似三角形的性质证明两角相等,进一步证明两直线位置关系(平行、垂直等)

ADDEDCCF 的方法,利用ΔADE∽ΔDCE得到ADDFBCCE,结合∠3=∠C,得到ΔBEC∽ΔAFD,因此∠1=∠2.进一步可 结合中点定义得到得到AF⊥BE.(3)总结证明四条线段成比例的常用方法:①比例的定义;②平行线分线段成比例定理;③ 三角形相似的预备定理;④直接利用相似三角形的性质;⑤利用中间比等量代换;⑥利用面 积关系.例4 已知:如图5-128,RtΔABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求证:(1)CD3=AAE·BF·AB;(2)BC2:AC2=CE:EA;(3)BC3:AC3=BF:AE.分析:

(1)掌握基本图形“RtΔABC,∠C=90°,CD⊥AB于D”中的常用结论.222①勾股定理:AC+BC=AB.②面积公式:AC·BC=AB·CD.222③三个比例中项:AC=AD·AB,BC=BD·BA,CD=DA·DB.中考网 www.feisuxs

中考网 www.feisuxs

AC2AD2BD ⑤BC(2)灵活运用以上结论,并掌握恒等变形的各种方法,是解决此类问题的基本途径,如等式

两边都乘或除以某项,都平方、立方,或两等式相乘等.(3)学习三类问题的常见的思考方法,并熟悉常用的恒等变形方法.3242①证明a型:先得到a=bc型,再两边乘方,求出a来,进行化简(证法一).或在a=bc两边乘以同一线段a,再进行化简(证法二).22②证明a:b=c:d型问题的常用方法:

a2mmc2nd nb(ⅰ)先证,再利用中间比证明

x2ca2x2ax222d ybyy再两边平方:(ⅱ)先证b,然后设法将右边降次,得

a2meamae,2bnbfnf,再将右边化简.b(ⅲ)先分别求出,两式相乘得③证明a3:b3=c:d型问题的常用方法:

a2mx2ny,再通过代换变形实现;(ⅰ)先用有关定理求出baxy,两边平方或立方,再通过代换实现;(ⅱ)先证ba3mexcamaeax,nbf,by,然后相乘并化简:b3nfyd(ⅲ)先分别求出b第(1)题:

2证法一 ∵ CD=AD·BD, 422 ∴ CD=AD·BD=(AE·AC)·(BF·BC)=(AE·BF)(AC·BC)=(AE·BF)·(AB·CD).ACBC

2AB 证法二 ∵ CD=AD·BD,CD=ACBC

3AB∴ CD=AD·BD·

ADACBDBCABABAB=

=AE·BF·AB.第(2)题:

中考网 www.feisuxs

中考网 www.feisuxs BC2BDBABDBDDFCE2ADEAAE,命 ADABADAC证法一 ∵,利用ΔBDF∽ΔDAE,证得题得证.BCDEBC2DE2AEECCE,得222ACAEAE ACAEAE证法二 由证法三 ∵ ΔBCD∽ΔCAD,BCDFACDE(相似三角形对应高的比等于对应边的比)∴

BC2DFDEDFCEBCDE2ACAEDEAEAEAE ∵ DE∥BC,∴,∴AC第(3)题:

BC2BDABBD2ADABAD, 证法一 ∵ACBC4BD2BFBCBC3BF423AEACAE ACADAC ∴,∴BCDFACDE 证法二: ΔADC∽ΔCDB,∴BC3DF3DFDF2DFBFCFBF332DEAEECAE· DEDEDE ∴ACBCDFBCDEBCBF,,DEACAEACDF, 证法三 ∵ACBC3BCBCBCDFDEBFBF3ACACACDEAEDFAE ∴AC

四、师生共同小结

在学生思考总结的基础上,教师归纳: 1.本章重点内容及基本图形.2.本章重要的解题方法、数学思想方法及研究问题的方法.五、作业

课本第261~265页复习题五中选取.补充题:

1.利用相似三角形的性质计算.已知:如图5-129,在RtΔABC,中∠ACB=90°,E为AB上一点,过E作ED∥BC交AC于D,过D作DF⊥AC交AB于F.若EF:FB=2:1,ED=2,CD=65,求FB的长.(答:2)

中考网 www.feisuxs

中考网 www.feisuxs

2.证明相似三角形的方法.如图5-130,在ΔABC,中∠C=60°,AD,BE是ΔABC的高,DF为ΔABD的中线.求证:DE=DF.(提

DE12.)示:证明ΔCDE∽ΔCAB,得到AB3.已知:如图5-131,ΔABC内一点O,过O分别作各边的平行线DE∥BC,FG∥AB,HK∥AC.求证:

EFDHGK1ACABBC(1)

(2)设SΔOEF=S1,SΔODH=S2,SΔOGK=S3,SΔABC=S.则

S1S2S3S

4.构造相似三角形来解决问题.(1)(1)已知:如图5-132,ΔABC中,点E为BC中点,点D在AC上,AC=1,∠BAC=60°∠ABC=

3100°,∠DEC=80°.求SΔABC+2SΔCDE;(答:8)(提示:延长AB至F,使F=AC.作∠BCF平分线交AF于G.—

中考网 www.feisuxs

中考网 www.feisuxs

111BC.(2)已知:如图5-133,在ΔABC中,∠A:∠B:∠C=1:2:4.求证:ABAC111ABAC1ABACACABACBCABACBCABBC.设(提示:把变形为,进一步变形为法

ABACAC和ABBC,作AE=AC,交BC延长线于E,构造相似三角形,使其对应边的比分别为延长AB至D,使BD=AC.)

5.构造基本图形(平行线分线段成比例定理).已知:如图5-134,ΔABC的三边BC,CA,AB上有点D,E,F.若AD,BE,CF三线交于一AFBDCE1FBDCEA点O.求证:.(塞瓦定理)

中考网 www.feisuxs

中考网 www.feisuxs

课堂教学设计说明

本教案需用1课时完成.本节例2在三角形相似的判定(四)中出现过,如果学生已经掌握,教师可在这节复习课中选 取补充题2或其它题目说明利用比例证明线段相等的方法.中考网 www.feisuxs

第三篇:相似三角形复习教案

相似三角形复习教案

教学目标: 本课为相似三角形专题复习课,是对本章基本内容复习基础上的深化,通过对一个题目的演变,紧紧围绕一线三直角这个基本模型展开,由浅入深对相似三角形进行,同时结合数学中的方程思想,分类思想,模型思想,数形结合思想等拓展深化.教学重点:相似三角形的一些基本图形特别是一线三直(等)角的复习.教学难点: 一线三直(等)角模型的拓展深化.教学过程: 练习:1.如图,AB>AC,过D点作一直线与AB相交于 点E,使所得到的新三角形与原△ABC相似.2.如图,直角梯形ABCD中,E是BC上的一动点,使△ABE与△ECD相似,则AB、BE、CE、CD之间满足的关系为____________.得到相似中最基本的几种图形,即:

A型 斜A型 一线三直角反射型

在得到上述基本图形后,通过找相似三角形,让学生体会基本图形的应用。并通过对这个题目的演变,将本课内容提要呈现出来.例1:在平面直角坐标系中,两个全等Rt△OAB与Rt △A’OC’如图放置,点A、C’在y轴上,点A’在x轴上,BO 与A’ C’相交于D.你能找出与Rt△OAB相似的三角形吗? 请简要说明理由 在上述条件下,设点B、C’ 的坐标分别为(1,3),(0,1),将△ A’OC’绕点O逆时针旋转90°至△ AOC,如图所示:

(1)若抛物线过C、A、A’,求此抛物线的解析式及对称轴;

(2)设抛物线的对称轴交x轴与点M,P为对称轴上的一动点,求当∠APC=90°时的点P坐标.本题主要是应用一线三直角这个基本图形,从而利用相似三角形的对应边关系求解,在教学过程中对P点的位置应作说明,可借助于几何画板演示.【变一变】线段BM上是否存在点P,使△ABP和△PMC相似?如存在,求出点P坐标,如不存在,请说明理由.本例让学生进一步应用基本图形,同时体会到数学思想——分类思想的应用.【拓展一】若点N是第一象限内抛物线上的一动点,当

∠NAA’=90°时,求N点坐标.通过添加一条辅助线构造一线三直角来提升对学生的要求。另外利用本题比较特殊的情况,即△AOA为等腰直三角形的 条件,采用一题多解的方法,帮助学生提高解题的能力.【拓展二】点N是抛物线的顶点,点Q是x轴正半轴上一点,将抛物线绕Q点旋转180°后得到新抛物线的顶点为M,与x轴相交于E、F两点(点E在点F的左边),当以点M、N、F为顶点的三角形是直角三角形时,求点Q的坐标.

/本例难度较大,通过引导让学生知道本题仍然可通过构造一线三直角的模型来解决,因为要添加较多辅助线,教师可将第一种情况和辅助线添加出来,从而让学生类比得到第二种方法的辅助线.课堂小节:对本节课复习模型的整理;相似应用的技巧梳理;学生疑惑的交流.

第四篇:《相似三角形》复习教学设计

《相似三角形》复习的教学设计

修武县郇封一中 薛海明

一、教材和学生现状的分析

相似三角形判定和性质是本册教材的重点也是难点。在期中考试中时,我发现学生对这部分的知识掌握基本上比较死板的。尤其是在以下几个方面比较欠缺:1.相似三角形的对应边找不来;2.对应顶点易写错

3、当出现动点时,学生不能把所有相似的情况想全;4.在相似的性质中,对于面积比等于相似比的平方,要么把平方漏掉,要么反过来,把相似比写成面积比的平方.二、教学目标

知识目标: 1.熟悉相似三角形的判定定理和性质定理。

2.灵活应用相似三角形的判定定理和性质定理,主要是两角对应相等、两边对应成比例及夹角相等。

技能目标: 通过动点问题,发展学生的思维能力,培养学生的思维能力和

语言表达能力。

情感目标: 培养学生独立思考问题的能力,以及团结协作的精神。

三、教学过程的设计:

本节内容为复习课,主要是组织学生回忆、思考、归纳,逐渐把这些知识内化于自己的知识结构体系中。1.从基本定理的复习入手,加以简单练习的巩固。针对学生对相似三角形中对应边不熟,练习1至7的设计就是让学生熟练寻找对应边和对应角。以及周长比和相似比,面积比和相似比性质。如:

1、两个相似三角形对应中线之比是1:2,则对应角平分线之比也是1:2。()

2、两个相似三角形面积比是1:2,则相似比是1:4。()

3、△ABC∽△A′B′C′,相似比为2:3,若△ABC周长为6,则△A′B′C′周长为9。()

2.两个相似五边形的面积比为9:16,其中较大 的五边形的周长为64cm,则较小的五边形.如图,DE∥BC,AD:DB=1:2,DC,BE交于点O,则△DOE与△BOC的周长之比是_________, ________._______cm.6.四边形ABCD面积比是是平行四边形,点E是 的周长为BC的延长线上的一点,而CE:BC=1:3,则 △ADG和△EBG的周长比

面积比。

4、两相似三角形对应高之比为3∶4,周长之和为28cm,则两个三角形周A 长分别为

B 2.“相似判定定理”的应用.因此,探索发现设计主要是对这个判定的应用。如例1.已知:如图,△ABC中,P是AB边上的一点,连结CP.满足一个什么条件时△ ACP∽△ABC.这个例题的设计具有一定的开放性.问学生图中有多少个理由判定相似三角形.A G C F D B

E P 2

C 3.相似部分中的动点问题,通常要求学生能全面地考虑各种可能的情况。对于学生来说有一定的难度。因此我制作课件,利用幻灯片的动画功把这个动点真正地动起来,加强直观和生动,让学生对问题掌握得更加全面。这是练习题的设计目的之一。如图,正方形ABCD的边长为8,E是AB的中点,且CM=2,点N在CD上滑动,则当CN=_________时,以C、M、N为顶点的三角形与△ADE相似。

同时,相似的判定中“AA”“SAS”是重点,而练习就包含了这两种方法的应用。数形结合是初中数学思想的重要组成部分,在相似中,这种思想的应用是非常多的。同时,相似与函数的综合应用也是学生必须掌握的内容。因此温故知新的设计正是为了达到以上目的。

4.练习题大多学生平时的易错题组成,这样设计,既与复习的内容密切联系,使学生能巩固这部分的知识。同时让那些乐于思考、对数学有很大兴趣的学生有更多的锻炼机会,更好地深化和完善知识。

四、教法

由于本节课是复习,老师组织好学生探索,引导他们归纳。1.让他们更多地体验知识的应用过程,主动获取知识。2.鼓励学生一题多解,从各种角度来思考问题,以达到对知识的灵活,娴熟应用。3.与信息技术相整合, 扫除学生的思维障碍。通过幻灯片动画的应用,变静为动,变抽象为直观。培养学生的形象思维能力。4.通过动点问题的研究,演示,培养学生思维的严密性。4.B

M

E A

D

N C 必要的点拨与指导.虽然我们提倡学生主动学习,但是老师指导也不可少。课堂上有许多问题是课前所不能预测的,老师的应变能力非常重要。如在不打击学生积极性的前提下纠正学生的错误。

五、学法

本节课中,学生的自主学习得到较好的体现。1.独立思考,探究.定理的复习以及简单的练习,学生均是独立完成.2.小组合作,积极讨论。在动点问题的研究中,由于学生思维的局限,许多学生并不能想全各种情形。因而小组成员的合作就非常必要。向同伴学习,印象更深。同时彼此之间能发现优点。

六、设计意图。

为了实现预期的教学目标,激发学生的学习需求,精心设计问题,设计层层递进的问题,能照顾到部分基础较弱的学生,又能使较好的学生思维得到拓展。在教学实施过程中,教师给予学生探索、研究以充分的时间,在教师的指导下,以学生个人和学生之间的合作与交流为主,师生互动,让学生在学习活动过程中体会自我建构的乐趣。对于思维创新的火花,哪怕它是很稚嫩、很欠缺的,教师也要积极鼓励,让学生的创新精神得以发扬。

第五篇:相似三角形复习课教案

《相似三角形》复习课教案

城区二中 章松岩

目的:使学生掌握相似三角形的判定和性质和应用,并能灵活运用。重点:相似三角形的判定和性质和应用。难点:相似三角形的灵活运用。教法:三疑三探。教具:多媒体。过程:

课前热身:时间为3分钟

1、根据下列条件能否判定△ABC与△A′B′C′相似?为什么?

(1)∠A=120°,AB=7,AC=14

∠A′=120°,A′B′=3,A′C′=6(2)AB=4,BC=6,AC=8 A′B′=12,B′C′=18,A′C′=21

(3)∠A=70°,∠B=48°, ∠A′=70°, ∠C′=62°

2、已知△ABC∽△ A′B′C′,其相似比为,则△ABC 与△A′B′C′的周长比为__对应高的比为__对应中线的比为__对应角平分线的比为__面积比为__。提问学生后教师简单总结,并让学生说说本单元的复习任务是什么? 相似三角形的判定

(1)两边对应成比例且夹角相等,两个三角形相似。(2)三边对应成比例,两个三角形相似。(3)两角对应相等,两个三角形相似。相似三角形的性质

(1)相似三角形对应边成比例,对应角相等。(2)相似三角形的周长比等于相似比。

(3)相似三角形的面积比等于相似比的平方。

(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。要求学生读几遍。介绍相似三角形的应用: 相似三角形的应用:

1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等;

3、利用三角形相似,可以解决一些不能直接测量的物体的长度。如求河的宽度、求建筑物的高度等。课堂抢答:

1、D是△ABC的边AB上的点, 请你添加一个条件,使△ACD与△ABC相似, 这个条件是()

2、如果一个三角形三边长分别为5、12、13,与其相似的三角形最大边长是39,则该三角形最短的边长为()

3、如图,在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于点F,BE:AB=2:3,则△BEF与△CDF的周长比为();若△BEF的面积为8平方厘米,则△CDF的面积为()

4、如图,铁道口的栏杆的短臂长1米,长臂长16米,当短臂端点下降0.8米时,长臂端点升高()(杆的宽度忽略不计)

5、如图,身高为1.6m的某同学想测量一棵大树的高度,她沿树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树高为()

A、4.8m

B、6.4m

C、8m

D、10m 竞赛角

如图,CD是Rt△ABC斜边上的高,E为AC的中点,ED交CB的延长线于F。求证:BD·CF=CD·DF 证明:∵CD⊥AB,E为AC的中点

∴ DE=AE

∴∠EDA=∠A

∵ ∠EDA=∠FDB

∴∠A=∠FDB

∵∠ACB= Rt ∠

∴ ∠A=∠FCD

∴ ∠FDB=∠FCD

∵ △FDB∽△FCD

∴ BD:CD=DF:CF

∴ BD·CF=CD·DF 中考链接:

在∆ABC中,AB=8cm,BC=16cm,点P从点A开始沿AB边向B点以2cm/秒的速度移动,点Q从点B开始沿BC向点C以4cm/秒的速度移动,如果P、Q分别从A、B同时出发,经几秒钟∆BPQ与∆BAC相似?

大胆质疑:

通过本节课的学习同学们还有什么疑问或新的发现请大胆提出来? 教师预设:

某社区拟筹资金2024元,计划在一块上、下底分别是10米、20米的梯形空地上种植花木(如图)他们想在△AMD和△BMC地带种植单价为10元 /米2的太阳花,当△AMD地带种满花后,已经花了500元,请你算一下,若继续在△BMC地带种植同样的太阳花,资金是否够用?并说明理由。

小结:

通这一节的复习之后你有哪些收获?

(1)掌握相似三角形的判定方法及性质;

(2)能灵活运用相似三角形的判定方法及性质进行计算或证明;(3)利用相似解决一些实际问题

(4)分类讨论思想: 遇到没有明确指明对应关系的三角形相似时,要注意考虑对位相似和错位相似两种情况,采取分类讨论的方法解决问题.作业:

1、必做题:学习指导第82页2,3,5题。

2、选做题: 板书设计: 教后记:

相似三角形复习课教案

城区二中

章松岩

2024年1月8日

教后反思

结合上课时的感受及课后评课,我对这节课作出如下反思: 成功地方:

1.能科学运用三疑三探模式上课。

2.能有效开展小组活动。充分发挥小组协作功能。

3.注重学生动口动手能力的培养,教师只起辅助引导作用。不足地方:

1.课前可创设问题情境,结合日常生活实际设计一个问题。2.课前热身习题可设计成学案的形式。3.学生评价素质有待于进一步提高。

4.部分习题处理过快影响了中差生的学习。5.中招链接题因为时间关系为处理。6.竟赛角题目设计过难。7.教师未使用普通话。整改措施:

1.复习期间认真备好复习课。2.注重发挥教研组集体协作功能。

3.注重数学思想方法的教学,注重讲题的效果,注重总结归纳解题方法。4.精选习题,不搞题海战术。5.注重批改,反馈,考后总结。6.注意培优补差,努力降低过差率。

本类热门