工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 范文大全 > 二号文库

等差数列认识 (教师版)三年级 奥数

最新文章

第一篇:等差数列认识 (教师版)三年级 奥数

2024春季

第一讲

等差数列认识

| 三年级·提高班·教师版 | 第1讲

2024春季

教学目标

1、认识简单的数列;

2、掌握什么是等差数列;

3、会求解简单的等差数列和;

知识点拨

1、如果一个数列从第二项起,每一项与它的前一项的差等于同一个数,这个数列就叫做等差数列,这个数叫做等差数列的公差。

2、等差数列求和:(首项+末项)×项数÷2

3、求项数:(末项-首项)÷公差+1

4、求末项:首项+(项数-1)×公差

(一)课堂引入

1.学生学情分析:

(1)三年级暑假对数列有过认识,并且三年级孩子比较喜欢找规律,并且对找规律比较擅长,所以可以从此入手,让孩子认识等差数列。此为切入点!

(2)数列计算和中,学生已经经历了凑整求和,所以在学习等差数列求和时,并不陌生,可以以此切入!此为难点!

2.引入-高斯‘神速求和’的故事

讲故事:高斯出生于一个贫困家庭,幼时家境贫困,但是异常聪明。就在像大家这么大的时候,一次老师出了一道非常难得数学题:把1到100的自然数加起来,和是多少?正在同学们苦思冥想的时候,高斯略加思索就说出了答案。同学们你们知道答案是多少吗?你们知道高斯用了什么方法巧妙地计算出来的吗?

情景1:学生对高斯的故事可能会比较熟悉,或许会清楚1到100的自然数之和,对于这种情况,可以根据学生回答的情况,提问——你们谁知道高斯用了什么方法巧妙地计算出来的呢?

情景2:这个问题,学生回答会比较困难,在此情况下,问:同学们想不想像高斯这样厉害,掌握这种巧妙的方法呢?

那么,我的小高斯们,下面我就先来认识下等差数列。

| 三年级·提高班·教师版 | 第1讲

2024春季

(二)探索新知

(一)等差数列的认识

例题精讲

例1:1、3、5、7、9、()

【教学建议】 等差数列的认识。

先让孩子去找规律填数,并让孩子去总结其中的规律所在,并能用合适的语言表达。从中提炼出两点:(1)相邻两数之间的差相同

(2)数依次增大

巩固练习: 20、17、14、11、8、5、()

对于练习题:提炼出两点:(1)相邻两数之间的差相同

(2)数依次减少

总结:通过例与练,让孩子们认识了等差数列的两种类型。等差数列:(1)相邻两数之间的差相同(2)数依次增加或者减少

提出知识点:公差,项(首项、末项),项数

回到例题与练习:让学生分别指出其中的公差,项(首项、末项),项数 目标:达到初步的认识

(二)通项求解

例2:(1)2、5、8、11、14„。按这样的规律排列的一串数,其中第21项是多少?

(2)把比100大的奇数从小到大排成一列,其中第21个是多少?

【教学建议】 在认识等差数列的基础上,让学生们有意识结合这种特殊的规律解题。并总结出通项公式!

让学生独立探索完成,然后收集学生的解题方法,学生可以会出现的情况: A、采用最笨的办法,直接按照规律,直接写到第21项 B、通过心算,直接写出第21项数,但无法列出算式 C、能过根据已知的数,列出算式(数出增加的公差)——(属于概括能力强的孩子,或者孩子学过)

D、通过列出正确的算式,也明白算理(一般很少,一个班最多1-2个)总结:

A、找出完成得比较好的学生,说出他们的算法,如果有完成C与D的学生,可以让他们当老师来讲讲计算的方法。

B、根据学生回答情况,引导出第21项的变化情况(从第一项,共增加了多少个公差),并让学生列出算式

| 三年级·提高班·教师版 | 第1讲

2024春季

C、扩展为其它项时,公差的增加情况,并让学生列出算式 D、总结通项公式(让学生先总结)

项=首项+公差*项数差

巩固练习: 有一堆按规律摆放的砖。从上往下数,第1层有1块砖,第2层有5块砖,第3层有9块砖······按照这样的规律,第19层有多少块砖?

【教学建议】 在学习例2的基础上,鼓励学生用例2总结出的结论计算本题。并让学生说出计算方法,以及算理,巩固等差数列的通项公式!

例3:已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少? 【教学建议】

加深对等差数列,及公差的理解,并让学生活用通项公式求项。

项=首项+公差*项数差

引导学生灵活使用等差数列,灵活使用公式“项=首项+公差*项数差”,灵活确定首项,并能正确求解项数差!

巩固练习:冬冬先在黑板上写了一个等差数列,刚写完阿奇就冲上讲台,擦去了其中的大部分数,只留下第四个数31和第十个数73。你能算出这个等差数列的公差和首项吗?

【教学建议】 层次在例3的基础上,更进一层。

让学生熟练,如何寻找公差,进一步理解等差数列中项的变化!难点:求公差!

巩固点:求项(灵活确定首项与项数差)

注:通过前面的学习,同学们可以达到的目标,(1)熟练确认等差数列,并轻松找出公差;(2)熟练运用通项公式求项;(三)项数求解

15页,以后每天都比前一天多读3页,最后一天读了36页,刚好把书读完。请问:小悦一共读了多少天?这本课外书共有多少页?

【教学建议】 问题1(1)在知道首项、末项与公差的基础上,如何求项数。

| 三年级·提高班·教师版 | 第1讲 例4:小悦读一本课外书,第一天读了

(2)题目比较形象,同学们可以自己探索完成问题1(3)同学们完成问题1的可能性有:A-通过列出每天看的页数,找出天数(天数较少,同学们极容易用这种方法解题)B-通过寻找增加的公差数与项数的关系找出天数(达到此水准的孩子,比例较低)(4)跟据学生对问题1的完成情况,适当提示并翻译本题:A-每天看的页数组成等差数列;B-天数为项数;C-引导向增加的了多少个公差,说明这是第几项,即第几天?(5)让学生跟据所引导,列出算式。

总结—根据同学们列出的算式总结出公式:(末项-首项)÷公差+1 问题2(1)涉及等差数列求和公式,因为本题中的重点是求项数,如果涉及过多知识点,学生容易厌烦,学习率不高,所以对于问题2,可以让学生用基础的方法算出,鼓励用好方法计算。但不做细讲,提示这就是等差数列求和,将在下面重点讲解。15+18+21+24+27+30+33+36 巩固练习:体育课上老师指挥大家排成一排,小叮当站排头,小叮咚站排尾,从排头到

2024春季

排尾依次报数。如果小叮当报3,小叮咚报25,每位同学报的数都比前一位多2,那么队伍里一共有多少人?

【教学建议】 对于项数求解的巩固。

注:经过前面的讲解,学生对于公差数与项数的关系有比较清晰的认识,完成此题,难度不大,可以出现在列式上。老师可以加以提示,与纠正。

(四)简单的等差数列求和

1.高斯求和故事引出-等差数列求和 2.着重点明高斯求和,并引出倒加法。思路:

揭晓高斯故事答案:5050 揭晓高斯巧妙方法:1+2+3+4+……+100(用彩虹桥讲解—即同学们熟知的首位相加)

注:这种方法,大部分同学都知道,讲解起来不算新鲜。

疑问:高斯所计算的这个等差数列,项的个数是偶数,刚好可以成对相加;如果这个等差数列是奇数相时,能够刚好成对相加吗?那这种方法似乎并不适用于所有的等差数列,那么有没有一种适合所有等差数列的方法呢? 提示:讲解“倒加法“ 总结:学生自主总结。

等差数列求和:(首项+末项)×项数÷2

| 三年级·提高班·教师版 | 第1讲

2024春季

同学们得到了高斯的智慧,于是乎,你们都成了小高斯。所以,小高斯们,赶快去试试吧。

例5:1+2+3+4+5+6+7+8+9+10+11+12

[教学建议] 例5和练习,项数不多,可以试着在原算是下面,反写一遍数列。得到直观地计算,让学生练习等差数列求和公式。

学生先试着独立完成,老师提示引导,并订正。巩固练习:11+12+13+14+15+16+17+18+19 总结:回忆等差数列公式(学生回忆),并提示公式中,必须要知道的量。

例6:计算:

(1)3+6+9+12+15+18+21+24+27+30(2)41+37+33+29+25+21+17+13+9+5+1

[教学建议] 经过例5和练习的锻炼,对等差数列求和与倒加法有了一定的熟悉。所以例6,着重让学生们在不重新写出反数列的情况下,利用等差数列计算。

巩固练习:计算:(1)5+11+17+···+77+83(2)193+187+181+···+103

[教学建议](1)项数未知,需要学生经过比较复杂的计算,题目比较综合。

(2)第一题,在学生试着去完成后,老师带着学生完成此题。让学生提升等差数列公式的运用能力,能够根据等差数列,去寻找未知项。(本题,少项数)(3)第二题,让学生独立尝试完成。订正。总结:回忆等差数列(学生回忆),强调运用等差数列求和时,需要知道的量,如果有某个量未知,需要设法求出,再利用等差数列求和。

| 三年级·提高班·教师版 | 第1讲

2024春季

例7:已知一个等差数列第8项等于50,第15项等于71。请问:(1)这个等差数列的第1项是多少?

(2)这个等差数列前10项的和是多少?

[教学建议] 经历了通项公式、项数公式、等差求和的学习,学生已经对这些知识点的记忆比较模糊了,所以先回忆通项公式、项数公式。

(1)通项公式:项=首项+公差*项数差(强调:需要知道公差)(2)项数公式:(末项-首项)÷公差+1 [思路导航] 问题1:

先让学生独立完成其中第一个问题。并通过老师讲解,进一步复习通项的求法。问题2:

求前10项和,根据等差数列公式,还需要知道“首项、末项”,也就是需要知道第一项与第10项。

(1)先让学生独立思考,根据学生完成情况,提问学生等差数列公式?还需要知道的量?

(2)让学生根据老师的提示,列出算式,求出和。

注:本题综合性比较强,一方面需要学生综合分析能力,一方面需要学生熟练运用通项公式、项数公式、等差数列。

经历了例7的学习,已经对等差数列的综合运用有了初步的学习。

巩固练习:体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?所有人报的总和是多少? [教学建议] 问题1:

学生独立完成,此为项数公式的运用。问题2:

求等差数列的总和,题目相对比较简单些,首项、末项、项数都清楚,所以大部分学生能够独立完成。

(五)奇数项等差数列求和公式

刚才说了,双数项等差数列可以通过配对求和,但是奇数项等差数列是否有独特的求和公式呢?(1)列出奇数项的等差数列,探寻配对和除以2后的值与最中间的数,即最后单独的数之间的关系;

| 三年级·提高班·教师版 | 第1讲

2024春季

可以发现,最中间的数就是这列数的平均数。总结出奇数项等差数列的求和公式: 中间数*项数=总和。

(2)反过来,强调知道奇数项数列的总和,可以求出中间数。下面,高斯们,我们来试试。

例8:有一串连续单数的数列,前7个数的和是105,问第10项是多少?

[教学建议] 本题主要是联系奇数项等差数列的求和特点,解决此题,题目比较综合。采用学生独立完成,老师引导,并订正的方案。目的:提高学生的综合分析能力。

巩固练习:有一串连续双数的数列,前11个数的和是374,问第25项是多少?

[教学建议] 类同例8,在例8的基础上,学生自主练习,增强学生的综合分析能力。

| 三年级·提高班·教师版 | 第1讲

2024春季

课后练习1、41、44、47、50、()、()2、3、6、9、12、15···这个按照一定规律的一串数,其中第20项是多少?150项呢?

3、(1)一个等差数列共有13项,每一项都比它的前一项大2,并且首项为23,求末项是多少?

(2)一个等差数列共有13项,每一项都比它的前一项小7,并且末项为125,求首项是多少?

4、有一堆粗细均匀的圆木,已知最上面一层有6根,共堆了25层。请问:这堆圆木共有多少根?

5、小王和小高同时开始工作,小王第一个月得到1000元工资,以后每个月都会比前一个月多得60元;小高第一个月得到500元工资,以后每个月都会比前一个月多得40元。两人工作一年后,所得的工资总数相差多少元?

| 三年级·提高班·教师版 | 第1讲

第二篇:奥数等差数列练习题

等差数列

1.一个剧场设置了22排座位,第一排有36个座位,往后每排都比前一排多2个座位,这个剧场共有多少个座位?

2.自1开始,每隔两个数写一个数来,得到数列:1,4,7,10,13,….,求出这个数列前100项只和?

3.影剧院有座位若干排,第一排有25个座位,以后每排比前一排多3个座位。最后一排有94个座位。问这个影剧院共有多少个座位?

4.小张看一本故事书,第一天看了25页,以后每天比前一天多看的页数相同,第25天看了97页刚好看完。问:这本书共有多少页?

5.已知数列:2,5,3,3,7,2,5,3,3,7,2,5,3,3,7,….,这个数列的第30项是哪个数字?到第25项止,这些数的和是多少?

植树问题

1.在一段公路的一旁栽95棵树,两头都栽,每两棵树之间相距5米,这段公路长多少米?

2.有三根木料,打算把每根锯成3段,每锯开一处,需要3分钟,全部锯完需多少时间?

3.一座楼房每上一层要走16个台阶,到小英家要走64个台阶。她家住在几楼?

第三篇:三年级奥数等差数列求和教学设计

《等差数列求和》教学设计

【教学目标】:

1、通过学习,初步建立配对求和的逻辑推理,简便计算的能力。

2、培养学生的观察和思考的能力。

3、学习本课知识有助于养成全面地,由浅入深、由简到繁观察思考问题的良好习惯。【教学重点】

用配对求和的简便方法解决问题,推导等差数列的求和公式。【教学难点】

等差数列求和公式的推导。【教学过程】

一、激趣引入

老师:同学们,如果,我说的是如果。你们第一次来上课老师奖励你们没人一块钱,第二次奖励两块,第三次奖励三块,„„请问,到第10次课后,你们每人得到了多少钱?(学生在草稿纸上计算,老师板书;1+2+3+4+5+6+7+8+9+10)老师:你们有什么简便的方法计算出这个式子的结果吗? 学生:凑十法!老师:怎么凑?

学生:1+9,2+8,3+7,4+6。

老师:很好,凑十法也能够很快算出结果。不过,凑十法也有缺陷,你们看,用凑十法最后还剩下走不到伴的数。大家想想,还有什么办法计算?(学生思考,讨论。)老师:请同学来回答。

学生:第一个数和最后一个数相加,第二个数和倒数第二个数相加„„

老师:这位同学观察很仔细。1加上10等于11,2加上9等于11„„这里面十个数刚好分为了5组,每组的和都是11.。所以我们也可以这样来计算这个式子的和。(板书:

(小结:在这里,我们使用了一种简便的计算方法:配对求和。即先配对再求和。)

二、讲授新课

老师:如果,还是如果。老师爱心泛滥,继续奖励你们money。请问,第一百天后,你们每人得到多少钱呢?

(板书:例题一+ 2 + 3 + 4+ „ + 98 + 99 + 100)

老师:这个式子又该怎样计算呢?就用刚才老师教的配对求和的方法。谁和谁配对呢? 学生:1和100,2和99,3和98„„(副板书:

老师:总共有多少对呢? 学生:50对。

老师:没错,一百个数,两个数一对,可以分为100除以2等于50对。所以在这道题中,我们也可以这样计算。(板书:

老师:1+2+3+4+5+…+98+99+100。这是一个自然数列,它们有着这样的规律。从第二项起每一项与它前面一项的差都相等,这样的数列叫做等差数列。后项与前项的差叫该数列的公差。我们把数列的第一项叫首项,最后一项叫末项。

等差数列的求和,我们可以根据刚才的计算的两个式子总结出一道公式。大家说是什么? 学生:总和=(首项+ 末项)×项数÷2 板书:总和=(首项+ 末项)×项数÷2)

老师:使用这个公式要注意,首先要判断这个数列是不是等差数列。(怎么判段?)首项、末项和项数(项数怎么求?)下面我们看例题二。(板书:例题2 2+5+8+11+14+17+20)老师:这个式子能不能用公式进行求和? 学生:可以。

老师:好,请一个同学说一下他是怎么做的。学生A:2加20的和乘以7除以2.结果等于77.老师:非常好,现学现用。其他同学有什么问题吗。用些同学可能会有疑问,这里面只有七个数,不够分对啊,还剩下一个光棍呢?这个公式还能不能呢?大家说能不能? 学生:能!

老师:我们一起来验算一下。(副板书:

老师:两次计算的结果一样吧!说明这个公式是正确的。

老师:这个公式看似很简单,只要一套数字就行了。但是在实际应用中并没那么简单,请看例题三。

(学生读题:小红读一本长篇小说,第一天读了30页,从第二天起,每天读的页数都比前一天多4页,最后一天读了70页,刚好读完。问:这本小说共有多少页?)

老师:这道题求这本小说共有多少页。因为每天读“每天读的页数都比前一天多4页”,第一天30页,第二天34页,第三天38页„„最后一天看了70页。我们要求这本小说共有多少页,只要把每天看的页数加起来就行了。可是,我们要一个个加起来吗? 学生:不用。

老师:不用。小红每天看的页数构成了一个等差数列。我们可以用公式计算。大家看一下这个公式里还有什么不知道? 学生:项数。

老师:其实天数就是项数。看了多少天,就有多少项。那要怎么求项数呢?(副板书:

(学生观察并思考。)

学生:项数就等于70减去30的差除以4。老师:就这样了吗。学生:还要加上1.老师:很好。(板书:

(小结:在这里,我们来小结一下求项数的公式:项数=(末项-首项)÷公差+1)

老师:在这里,我改一下题目,把“最后一天读了70页”改为“第十一天刚好读完。问这本书共有多少页?怎么算呢。(学生思考讨论。)学生:还是用等差数列求和公式。老师:这个公式里面还有哪个量不知道? 学生:末项。老师:怎么求?(副板书:

(小结:在这里,我们来小结一下求末项的公式: 末项=首项+(项数-1)×公差)

三、完成课堂练习。

学生完成讲义上的课堂练习。

四、布置作业。

五、课后总结。等差数列相关公式: 总和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 末项=首项+(项数-1)×公差

六、板书设计(附后)

七、课后反思。

第四篇:三年级奥数

发到

三年级奥数--年龄问题

教学目标

1.掌握用线段图法来分析题中的年龄关系.2.利用已经学习的和差、和倍、差倍的方法求解年龄问题.

知识点说明:

一、年龄问题变化关系的三个基本规律:

1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量; 3.两个人之间的年龄差不变

二、年龄问题的解题要点是:

1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系. 2.关键:抓住“年龄差”不变.

3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式. 4.陷阱:求过去、现在、将来。

年龄问题变化关系的三个基本规律: 1.两人年龄的差是不变的量; 2.两人年龄的倍数关系是变化的量;

年龄问题的解题正确率保证:验算!

例题精讲

【例 1】 小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁? 【解析】 这道题有两种解答方法:

方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年6612(岁);妈妈今年36岁,再过6年是(366)岁,也就是42岁,那时,妈妈比小卉大421230(岁).

列式:(366)(66)421

230(岁)

方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大(366)岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.

列式:36630(岁)

答:再过6年,小卉读初中时,妈妈比小卉大30岁.

【巩固】 小英比小明小3岁,今年他们的年龄和是老师年龄的一半,再过15年,他们的年龄和就等于老师的年龄,今年小英的年龄是多少岁?

【解析】 经过15年,小英和小明的年龄和比老师多增加15岁,所以老师今年年龄的一半是15岁,即小英和小明今年的年龄和是15岁,小英今年的年龄是(15-3)÷2=6(岁).【巩固】 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?

【解析】 五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”发到 的和差问题.

爸爸的年龄:(726)239(岁)妈妈的年龄:39633(岁)【巩固】 今年小宁9岁,妈妈33岁,那么再过多少年小宁的岁数是妈妈岁数的一半?

【解析】 今年小宁比妈妈小33924(岁),那么小宁永远比妈妈小24岁.几年后小宁是妈妈岁数的一半时,即妈妈年龄是小宁的2倍时,妈妈仍比小宁大24岁.这是个差倍问题.以小宁的年龄作为1倍量,妈妈年龄是2倍量,所以妈妈比小宁大的岁数也是1倍量,即1倍量代表着24岁.所以小宁24岁时是妈妈年龄的一半,因此再过24915(年).

【巩固】 6年前,母亲的年龄是儿子的5倍,6年后母子年龄和是78岁.问:母亲今年多少岁? 【解析】 6年后母子年龄和是78岁,可以求出母子今年年龄和是78-6×2=66(岁).6年前母子年龄和是66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄.

母子今年年龄和: 78-6×2=66(岁),母子6年前年龄和: 66-6×2=54(岁),母亲6年前的年龄: 54÷(5+1)×5=45(岁),母亲今年的年龄: 45+6=51(岁).

【巩固】 学而思学校张老师和刘备、张飞、关羽三个学生,现在张老师的年龄刚好是这三个学生的年龄和;9年后,张老师年龄为刘备、张飞两个学生的年龄和;又3年后,张老师年龄为刘备、关羽两个学生的年龄和;再3年后,张老师年龄为张飞、关羽两个学生的年龄和.求现在各人的年龄.

【解析】 张老师刘备张飞关羽,张老师9刘备9张飞9,比较一下这两个条件,很快得到关羽的年龄是9岁;同理可以得到张飞是9312(岁),刘备是93315(岁),张老师是9121536(岁).

【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【例 2】 小明与爸爸的年龄和是53岁,小明年龄的4倍比爸爸的年龄多2岁,小明与爸爸的年龄相差几岁? 【解析】 把小明的年龄看成是一份,那么爸爸的年龄是四份少2,根据和倍关系:

小明的年龄是:(53+2)÷(4+1)=11(岁),爸爸的年龄是:53-11=42(岁),小明与爸爸的年龄差是:42-11=31(岁).

【巩固】 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁? 【解析】 妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72÷(1+4+4)=8(岁),妈妈的年龄是:8×4=32(岁),爸爸和妈妈同岁为32岁.【例 3】 姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?

【分析】 用线段图显示数量关系,可以看出这道题实际上就是前面总结过的和差问题.姐弟俩的年龄差总是1394(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.发到

弟弟的年龄:(404)218(岁),姐姐的年龄:18422(岁).

【例 4】 东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东、西西今年的年龄各是多少?

【分析】 东东3年后的年龄等于西西1年前的年龄,说明东东比西西小4岁; 东东3年前的年龄与西西4年后的年龄之和是25岁,所以今年东东和西西的年龄和是253424(岁),今年东东的年龄:(244)210(岁),今年西西的年龄:241014(岁).

【巩固】 哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍.哥哥今年多少岁?

【解析】 兄弟二人现在的年龄和是27岁,两人的年龄差是27,哥哥现在3515(岁).(45)3(岁)

【巩固】 今年彬彬的年龄是表弟年龄的4倍,20年后,彬彬的年龄比表弟的年龄的2倍少l2岁,今年彬彬、表弟各多少岁?

【解析】 表弟今年年龄的4122(倍)对应的是:20220128(年),由此可以求出表弟今年的年龄,使问题得解.824(岁),4416(岁).所以表弟今年4岁,彬彬今年16岁.

【例 5】 父子年龄之和是45岁,再过5年,父亲的年龄正好是儿子的4倍,父子今年各多少岁?

【解析】 再过5年,父子俩一共长了10岁,那时他们的年龄之和是4510=55(岁),由于父亲的年龄是儿子的4倍,因而55岁相当于儿子年龄的41=5倍,可以先求出儿子5年后的年龄,再求出他们父子今年的年龄.

5年后的年龄和为:455255(岁)5年后儿子的年龄:55(41)11(岁)儿子今年的年龄:1156(岁),父亲今年的年龄:45639(岁)【巩固】 父子年龄之和是60岁,8年前父亲的年龄正好是儿子的3倍,问父子今年各多少岁?

【解析】 由已知条件可以得出,8年前父子年龄之和是608244(岁),又知道8年前父亲的年龄正好是儿子的3倍,由此可得:

儿子:(6082)(31)819(岁)父亲:601941(岁)【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【巩固】 王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是

18岁.王老师今年32岁,李老师今年多少岁? 【解析】 王老师比李老师大2031836(岁).故李老师今年的年龄为32626(岁).

第五篇:小学五年级奥数等差数列练习题

等差数列练习题

1、有一个数列:2,6,10,14,…,106,这个数列共有多少项?。

2、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项?

3、求1,5,9,13,…,这个等差数列的第3O项。

4、求等差数列2,5,8,11,…的第100项。

5、计算1+2+3+4+…+53+54+55的和。

6、计算5+10+15+20+⋯ +190+195+200的和。

7、计算(1+3+5+7+…+2024)-(2+4+6+8+…+2024)

8、计算(2+4+6+…+100)-(1+3+5+…+99)

本类热门