工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 范文大全 > 一号文库

高考数学一轮知识点复习:代数(九)(Word版,含答案)

最新文章

高考数学一轮知识点复习:代数(九)

姓名:__________

班级:__________学号:__________

一、单选题

1.四个物体同时从某一点出发向前运动,其路程

关于时间的函数关系是,,如果它们一直运动下去,最终在最前面的物体具有的函数关系是()

A.B.C.D.2.已知函数,若函数

在区间

内存在零点,则实数a的取值范围是()

A.B.C.D.3.若函数

有三个不同的零点,则实数a的取值范围是()

A.B.C.D.4.如图,在中,,将

绕边AB翻转至,使面

面ABC,D是BC的中点,设Q是线段PA上的动点,则当PC与DQ所成角取得最小值时,线段AQ的长度为()

A.B.C.D.5.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围是().A.B.[-1,0]                        C.(-∞,-2]                        D.6.已知函数

满足,且

是偶函数,当

时,若在区间

内,函数

个零点,则实数的取值范围是()

A.B.C.D.7.如图,在四边形

中,已知,则的最小值为()

A.1                                           B.2                                           C.3                                           D.4

8.已知函数,则方程g[f(x)]﹣a=0(a>0)的根的个数不可能为()

A.6个                                       B.5个                                       C.4个                                       D.3个

9.关于函数,有以下三个结论:①函数恒有两个零点,且两个零点之积为

;②函数的极值点不可能是

;③函数必有最小值.其中正确结论的个数有()

A.0个                                       B.1个                                       C.2个                                       D.3个

10.已知函数,是定义在R上的函数,且

是奇函数,是偶函数,若对于任意

.都有

.则实数a的取值范围是()

A.B.C.D.二、多选题

11.已知函数,则以下结论错误的是()

A.任意的,且,都有

B.任意的,且,都有

C.有最小值,无最大值

D.有最小值,无最大值

12.下列说法正确的是().A.若,则的最大值为4

B.若,则函数的最大值为-1

C.若,则的最小值为1

D.函数的最小值为9

13.在正方体

中,点M在线段

上运动,则下列说法正确的是()

A.直线

平面

B.直线

与平面

所成角的正弦值的最大值为

C.异面直线AM与

所成角的取值范围是

D.三棱锥的体积为定值

14.函数的定义域为R,且

都为奇函数,则()

A.为奇函数           B.为周期函数           C.为奇函数           D.为偶函数

15.已知定义在R上的函数

同时满足下列三个条件:①

是奇函数;②

;③当,时,;

则下列结论正确的是()

A.的最小正周期

B.在上单调递增

C.的图象关于直线

对称

D.当

时,三、填空题

16.已知,若,则的最小值为________.

17.已知函数,且

在定义域内恒成立,则实数的取值范围为________.

18.若函数f(x)=的定义域为R,则a的取值范围为________.

19.已知函数,若函数

使得方程

恰有3个不同根,则实数a的取值范围为________.20.若,且,求的最小值________.四、解答题

21..若f(x)是定义在(0,+∞)上的函数,当x>1时,f(x)>0,且满足

(1).求f(1)的值;

(2).判断并证明函数的单调性;

(3).若f(2)=1,解不等式

22.已知函数

有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.(1)已知,,利用上述性质,求函数的单调区间和值域.(2)对于(1)中的函数

和函数,若对于任意的,总存在,使得

成立,求实数的值.答案解析部分

一、单选题

1.【答案】

D

2.【答案】

B

3.【答案】

B

4.【答案】

B

5.【答案】

A

6.【答案】

D

7.【答案】

C

8.【答案】D

9.【答案】

D

10.【答案】

D

二、多选题

11.【答案】

A,B,C

12.【答案】

B,D

13.【答案】

A,B,D

14.【答案】

A,B,C

15.【答案】

A,B,D

三、填空题

16.【答案】

17.【答案】

18.【答案】

[-1,0]

19.【答案】

20.【答案】

四、解答题

21.【答案】

(1)解:令x=y=1可得f(1)=f(1)﹣f(1)=0

(2)解:设x1>x2>0,则f(x1)﹣f(x2)=f(),∵x1>x2>0,∴

>1,∴f()>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),∴f(x)在(0,+∞)上是增函数

(3)解:∵f(2)=1,∴f()=f(1)﹣f(2)=﹣1,∴f(4)=f(2)﹣f()=2,∵,∴f(x2+3x)<f(4).

∴,解得0<x<1.

∴不等式的解集是(0,1)

22.【答案】

(1)解:,设,则,则,由已知性质得,当,即

时,单调递减,所以递减区间为,当,即

时,单调递增,所以递增区间为,由,,得的值域为

.(2)解:由于

为减函数,故,由题意,的值域为的值域的子集,从而有

所以

本类热门