工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 范文大全 > 一号文库

动态系统建模仿真实验报告四旋翼仿真

最新文章

动态系统建模仿真

实验报告(2)

四旋翼飞行器仿真

2025

1实验内容

基于Simulink建立四旋翼飞行器的悬停控制回路,实现飞行器的悬停控制;

建立UI界面,能够输入参数并绘制运动轨迹;

基于VR

Toolbox建立3D动画场景,能够模拟飞行器的运动轨迹。

2实验目的通过在Matlab

环境中对四旋翼飞行器进行系统建模,使掌握以下内容:

四旋翼飞行器的建模和控制方法

在Matlab下快速建立虚拟可视化环境的方法。

3实验器材

硬件:PC机。

工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。

4实验原理

4.1四旋翼飞行器

四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。

四个旋翼位于一个几何对称的十字支架前,后,左,右四端,如图

所示。旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。

图1四旋翼飞行器旋转方向示意图

在图

中,前端旋翼

和后端旋翼

逆时针旋转,而左端旋翼

和右端的旋翼

顺时针旋转,以平衡旋翼旋转所产生的反扭转矩。

由此可知,悬停时,四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。

4.2建模分析

四旋翼飞行器受力分析,如图

所示

图2四旋翼飞行器受力分析示意图

旋翼机体所受外力和力矩为:

重力mg,机体受到重力沿方向;

四个旋翼旋转所产生的升力

(i=

1,2,3,4),旋翼升力沿方向;

旋翼旋转会产生扭转力矩

(i=

1,2,3,4)。垂直于叶片的旋翼平面,与旋转矢量相反。

力模型为:,旋翼通过螺旋桨产生升力。是电机转动力系数,可取,为电机转速。旋翼旋转产生旋转力矩Mi(i=1,2,3,4),力矩Mi的旋向依据右手定则确定。力矩模型为,其中是电机转动力系数,可取为电机转速。当给定期望转速后,电机的实际转速需要经过一段时间才能达到。实际转速与期望转速之间的关系为一阶延迟:响应延迟时间可取0.05s(即)。期望转速则需要限制在电机的最小转速和最大转速之间,范围可分取[1200rpm,7800rpm]。

飞行器受到外界力和力矩的作用,形成线运动和角运动。线运动由合外力引起,符合牛顿第二定律:

r为飞机的位置矢量。

角运动由合力矩引起。四旋翼飞行器所受力矩来源于两个方面:1)旋翼升力作用于质心产生的力矩;2)旋翼旋转产生的扭转力矩。角运动方程如下式所示。其中,L

为旋翼中心建立飞行器质心的距离,I

为惯量矩阵。

4.3控制回路设计

控制回路包括内外两层。外回路由Position

Control

模块实现。输入为位置误差,输出为期望的滚转、俯仰和偏航角。内回路由Attitude

Control

模块实现,输入为期望姿态角,输出为期望转速。Motor

Dynamics

模块模拟电机特性,输入为期望转速,输出为力和力矩。Rigid

Body

Dynamics

是被控对象,模拟四旋翼飞行器的运动特性。

图3包含内外两个控制回路的控制结构

(1)内回路:姿态控制回路

对四旋翼飞行器,我们唯一可用的控制手段就是四个旋翼的转速。因此,这里首先对转速产生的作用进行分析。假设我们希望旋翼1的转速达到,那么它的效果可分解成以下几个分量:

:使飞行器保持悬停的转速分量;

:除悬停所需之外,产生沿ZB轴的净力;

:使飞行器负向偏转的转速分量;

:使飞行器正向偏航的转速分量;

因此,可以将期望转速写成几个分量的线性组合:

其它几个旋翼也可进行类似分析,最终得到:

在悬浮状态下,四个旋翼共同的升力应抵消重力,因此:

此时,可以把旋翼角速度分成几个部分分别控制,通过“比例-微分”控制律建立如下公式:

综合以上三式可得到期望姿态角-期望转速之间的关系,即内回路。

外回路:位置控制回路

外回路采用以下控制方式:通过位置偏差计算控制信号(加速度);建立控制信号与姿态角之间的几何关系;得到期望姿态角,作为内回路的输入。期望位置记为。可通过PID

控制器计算控制信号:

是目标悬停位置是我们的目标悬停位置(i=1,2,3),是期望加速度,即控制信号。注意:悬停状态下线速度和加速度均为0,即。

通过俯仰角和滚转角控制飞行器在XW和YW平面上的运动,通过控制偏航角,通过控制飞行器在ZB轴上的运动。可得:

根据上式可按照以下原则进行线性化:

(1)将俯仰角、滚转角的变化作为小扰动分量,有,,(2)偏航角不变,有,其中初始偏航角,为期望偏航角(3)在悬停的稳态附近,有

根据以上原则线性化后,可得到控制信号(期望加速度)与期望姿态角之间的关系:

则内回路的输入为:

5实验步骤与结果

(1)

根据控制回路的结构建立simulink模型;

(2)

为了便于对控制回路进行参数调整,利用Matlab软件为四旋翼飞行器创建GUI参数界面;

(3)

利用Matlab的VR

Toolbox建立四旋翼飞行器的动画场景

(4)

根据系统的结构框图,搭建Simulink模块以实现模拟飞行器在指定位置的悬停。使用默认数据,此时xdes=3,ydes=4,zdes=5,开始仿真,可以得到运动轨迹x、y、z的响应函数,同时可以得到在xyz坐标中的空间运动轨迹。然后点击GUI中的VR按钮使simulink的工作空间中载入系统仿真所需的参数,把x、y、z的运动轨迹和Roll,Pitch,Yaw输入至VR中的模拟飞行器中,观察飞行器的运动轨迹和运动姿态,然后再使用一组新的参数xdes=-8,ydes=3,zdes=6进行四旋翼飞行器运动进行仿真模拟,可以看出仿真结果和动画场景相吻合。

6实验总结与心得

此次MATLAB实验综合了SIMULINK、GUI和VR场景等多个部分,对四旋翼飞行器运动进行了仿真模拟。由仿真结果可以看出,四旋翼飞行器最终位置达到了期望给定的位置,三个方向的响应曲线最终平稳,对应飞行器悬停在期望位置,达到了控制要求。

本次试验收获很多,学习到了很多知识,首先是熟悉了SIMULINK由简至繁搭建系统的过程,学习了利用VR建立虚拟模型,并在SIMULINK中连接。其次是熟悉了MATLAB

GUI界面的编写和搭建过程。Matlab提供了强大的用户图形界面,以帮助用户不必编写底层程序而直接在软件包基础上进行自行开发,这点在诸多软件中都有所体现。另外通过实验,对四旋翼飞行器的受力分析、模型建立、控制回路设计等有了较为细致的了解。

本类热门