工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 范文大全 > 一号文库

第十七章 勾股定理 单元测试八年级数学下册同步课堂(人教版)(解析版)

最新文章

第十七章

勾股定理

单元测试

一、单选题

1.一个直角三角形两边长分别是和,则第三边的长是()

A.

B.或

C.或

D.

【答案】C

【解析】

记第三边为c,然后分c为直角三角形的斜边和直角边两种情况,利用勾股定理求解即可.解:记第三边为c,若c为直角三角形的斜边,则;

若c为直角三角形的直角边,则.

故选:C.

【点睛】

本题考查了勾股定理,属于基本题目,正确分类、熟练掌握勾股定理是解题的关键.

2.△ABC的三边为a、b、c,由下列条件不能判断它是直角三角形的是()

A.∠A:

∠B:

∠C

=3∶4∶5

B.∠A=∠B+∠C

C.a2=(b+c)(b-c)

D.a:b:c

=1∶2∶

【答案】A

【解析】

根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.解:根据直角三角形的两锐角互余,可知180°×=75°<90°,不是直角三角形,故正确;

根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得∠A=90°,是直角三角形,故不正确;

根据平方差公式,化简原式为a2=b2-c2,即a2+c2=b2,根据勾股定理的逆定理,可知是直角三角形,故不正确;

根据a、b、c的关系,可直接设a=x,b=2x,c=x,可知a2+c2=b2,可以构成直角三角形,故不正确.故选A.【点睛】

此题主要考查了直角三角形的判定,关键是根据三角形的两锐角互余,三角形的内角和定理和勾股定理逆定理进行判断即可.3.如图,在直线l上有三个正方形m、q、n,若m、q的面积分别为5和11,则n的面积()

A.4

B.6

C.16

D.55

【答案】C

【解析】

运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.解:由于m、q、n都是正方形,所以AC=CD,∠ACD=90°;

∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,且AC=CD,∠ABC=∠DEC=90°

∴△ACB≌△DCE(AAS),∴AB=CE,BC=DE;

在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sn=Sm+Sq=11+5=16,∴正方形n的面积为16,故选C.

【点睛】

本题主要考查对全等三角形和勾股定理的综合运用,关键是证明三角形全等.

4.若△ABC的三边长分别为a、b、c且满足(a+b)(a2+b2﹣c2)=0,则△ABC是()

A.等腰三角形

B.直角三角形

C.等腰三角形或直角三角形

D.等腰直角三角形

【答案】B

【解析】

首先根据三边关系,进行转换得出a2+b2=c2,即可判定△ABC直角三角形.(a+b)(a2+b2﹣c2)=0,∵a+b≠0,∴a2+b2﹣c2=0,即a2+b2=c2,∴△ABC直角三角形,故选:B.

【点睛】

此题主要考查利用三边关系以及勾股定理逆定理,判定三角形的形状,熟练掌握,即可解题.5.如图,在中,平分交于点,平分,交于点,若,则()

A.75

B.100

C.120

D.125

【答案】B

【解析】

根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE2+CF2=EF2.∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.

故选:B

【点睛】

本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.

6.如图,一根垂直于地面的旗杆在离地面5m的B处撕裂折断,旗杆顶部落在离旗杆底部12m的A处,则旗杆折断部分AB的高度是()

A.5m

B.12m

C.13m

D.18m

【答案】C

【解析】

直接利用勾股定理即可得.由题意得:

故选:C.

【点睛】

本题考查了勾股定理的应用,掌握勾股定理是解题关键.

7.将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h的取值范围是()

A.

B.

C.

D.

【答案】C

【解析】

【解析】

观察图形,找出图中的直角三角形,利用勾股定理解答即可.首先根据圆柱的高,知筷子在杯内的最小长度是8cm,则在杯外的最大长度是24-8=16cm;

再根据勾股定理求得筷子在杯内的最大长度是(如图)AC==17,则在杯外的最小长度是24-17=7cm,所以h的取值范围是7cm≤h≤16cm,故选C.【点睛】

本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.

8.有下面的判断:

①若△ABC中,a2+b2≠c2,则△ABC不是直角三角形;

②△ABC是直角三角形,∠C=90°,则a2+b2=c2;

③若△ABC中,a2-b2=c2,则△ABC是直角三角形;

④若△ABC是直角三角形,则(a+b)(a-b)=c2.其中判断正确的有()

A.4个

B.3个

C.2个

D.1个

【答案】B

【解析】

根据勾股定理及其逆定理依次判断即可解答.①c不一定是斜边,①错误;

②根据勾股定理可得②正确;

③根据勾股定理的逆定理可得③正确;

④若△ABC是直角三角形,a是斜边,则(a+b)(a-b)=c2,④正确.

共2个正确.

故选B.

【点睛】

本题考查了勾股定理及其逆定理,熟练运用勾股定理及其逆定理是解决问题的关键.

9.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为、、;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为、、.其中,,则()

A.

B.

C.

D.

【答案】C

【解析】

如下图1示,分别用AB、BC和AC表示、、,然后根据勾股定理得出、、的关系,可计算出;同理如下图2所示,可得出、、的关系,进而计算出,计算即可得出答案.如图1,,,根据勾股定理,有,∴,如图2,设圆心角为θ°,,,同理可得,∴

故答案为C.【点睛】

本题主要考查勾股定理与代数求解之间的关系,熟知等边三角形和扇形的面积公式是解答本题的关键.10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()

A.16

B.17

C.18

D.19

【答案】B

【解析】

如图

设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=BC,BC=CE=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;

∴S2的面积为=8;

∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选B.

11.如图,△ABC中,∠ACB=90°,BC=3,AC=4,点D是AB的中点,将△ACD沿CD翻折得到△ECD,连接AE,BE,则线段BE的长等于()

A.

B.

C.

D.2

【答案】A

【解析】

试题解析:如图延CD交AE与点H,作,垂足为F.

∵在中,∵D为AB的中点,∴AD=BD=DC.

解得

由翻折的性质可知AC=CE,AD=DE,∵

为直角三角形.

故选A.

12.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()

A.

B.

C.

D.

【答案】A

【解析】

分析:将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F.AP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.

详解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.

∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.

∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.

则△ABC的面积是•AB2=•(25+12)=9+.

故选A.

点睛:本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.

二、填空题

13.己知三角形三边长分别为,,则此三角形的最大边上的高等于_____________.【答案】

【解析】

分析:根据勾股定理的逆定理可判断三角形为直角三角形,然后根据直角三角形的面积求解即可.详解:∵三角形三边长分别为,∴

∴三角形是直角三角形

∴高为

故答案为.点睛:此题主要考查了勾股定理的逆定理的应用,利用勾股定理的逆定理判断此三角形是直角三角形是解题关键.14.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.

【答案】0.5

【解析】

结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).

故答案为0.5.点睛:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.

15.如图,在中,AB=AC=5,BC=6,点M为BC中点,于点N,则MN=____________

【答案】

【解析】

连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据直角三角形的面积公式即可求得MN的长.解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM,BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△AMC中,AC=5,CM=3,∴根据勾股定理得:AM=4,又S△AMC=MN•AC=AM•CM,∴MN=.

故答案为:.【点睛】

本题综合运用了等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.

16.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.

【答案】17

【解析】

试题解析:根据勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.

∴正方形D的面积=49-8-10-14=17(cm2).17.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是___________.

【答案】50

【解析】

易证△AEF≌△BAG,△BCG≌△CDH即可求得AF=BG,AG=EF,GC=DH,BG=CH,即可求得梯形DEFH的面积和△AEF,△ABG,△CGB,△CDH的面积,即可解题.∵∠EAF+∠BAG=90°,∠EAF+∠AEF=90°,∴∠BAG=∠AEF,∵在△AEF和△BAG中,∴△AEF≌△BAG,(AAS)

同理△BCG≌△CDH,∴AF=BG=3,AG=EF=6,GC=DH=4,BG=CH=3,∵梯形DEFH的面积=(EF+DH)•FH=80,S△AEF=S△ABG=AF•AE=9,S△BCG=S△CDH=CH•DH=6,∴图中实线所围成的图形的面积S=80-2×9-2×6=50,故答案为:50.

【点睛】

本题考查了全等三角形的判定和性质,本题中求证△AEF≌△BAG,△BCG≌△CDH是解题的关键.

18.在一个长为8分米,宽为5分米,高为7分米的长方体上,截去一个长为6分米,宽为5分米,深为2分米的长方体后,得到一个如图所示的几何体.一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到几何体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是________分米.

【答案】;

13或

【解析】

试题分析:把立体图展开可得

根据侧面展开图可由两点之间,线段最短,知AB最短,故根据勾股定理可求得AB=13分米;

②根据立体图形可知把AC,BE向外展开,得到直角边长为5+1+=7,把中间凹面展开可得到直角边为6+2+2=10,然后根据勾股定理可求得最短距离为;

③同②的方式,得到两直角边分别为11和6,然后根据勾股定理求得最短距离为=.

考点:立体图形的侧面展开图,两点之间,线段最短,勾股定理

19.如图是一个三级台阶,它的每一级的长、宽和高分别为20

dm,3

dm,2

dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.【答案】25

【解析】

先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答即可.如图所示.

∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.

设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.

故答案为25.

【点睛】

本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.

20.如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是________.

【答案】AB,EF,GH

【解析】

【解析】

本题应先计算出各线长度,再根据勾股定理逆定理进行判断.AB2=22+22=8,CD2=42+22=20,EF2=12+22=5,GH2=32+22=13,所以AB2+EF2=GH2.

故其中能构成一个直角三角形三边的线段是AB,EF,GH.

故答案为:AB,EF,GH.

【点睛】

本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知每条边的长,只要利用勾股定理的逆定理加以判断即可.

21.如图,△ABC中,∠ACB=90°,AC

=3,BC

=4,AB=5,BD平分∠ABC,如果M、N分别为BD、BC上的动点,那么CM+MN的最小值是____.

【答案】2.4

【解析】

过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.

解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.

∵AC=3,BC=4,AB=5,∴AC2+BC2=AB2,∴∠ACB=90°,∴AB•CE=

BC•AC,即5CE=3×4

∴CE=2.4.

即CM+MN的最小值为2.4.

故答案为2.4

【点睛】

本题考查的知识点是轴对称-最短路线问题,解题关键是画出符合条件的图形.22.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.【答案】1.5

【解析】

连接DF,由勾股定理求出AB=5,由等腰三角形的性质得出∠CAF

=∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.连接DF,如图所示:

在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF

=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;

∴CF=1.5;

故答案为1.5.

【点睛】

本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.

23.已知:如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(7,0),C(0,4),点D的坐标为(5,0),点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,点P的坐标为______________.【答案】(2,4)或(3,4)

【解析】

【解析】

当△ODP是腰长为5的等腰三角形时,考虑到BD

OA=7,∵D的坐标为(5,0),∴OD=5,∴AD=2,∵四边形OABC是矩形,∴∠A=90°,∴BD==2<5=OD,故有三种情况:

OD=PD或OD=OP或者OP=PD,①当OD=PD时,p(2,4)或P(8,4)(舍去)

②当OD=OP时,PC=

=

=3.故此时点P的坐标为(3,4).③当OP=PD时,P(,4)(舍去).故答案为:(2,4)或(3,4).

【点睛】

本题考查了等腰三角形的判定和性质,勾股定理的运用等知识,以及分类讨论的数学思想,注意考虑问题要全面.24.在锐角三角形ABC中.BC=,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.

【答案】4

【解析】

过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据BC=,∠ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,∵BC=,∠ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴CE=BC•cos45°=×=4.

∴CM+MN的最小值为4.

【点睛】

本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.三、解答题

25.如图,在△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D,求证:.【答案】见解析

【解析】

连接AM得到三个直角三角形,运用勾股定理分别表示出AD²、AM²、BM²进行代换就可以最后得到所要证明的结果.证明:连接MA,∵MD⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2

∵M为BC中点,∴BM=MC.

∴AD2=AC2+BD2

【点睛】

本题考查了勾股定理,三次运用勾股定理进行代换计算即可求出结果,另外准确作出辅助线也是正确解出的重要因素.

26.如图,在△ABC中,CD是AB边上高,若AD=16,CD=12,BD=9.

(1)求△ABC的周长.

(2)判断△ABC的形状并加以证明.

【答案】(1)60;(2)直角三角形,证明见解析.【解析】

(1)利用勾股定理可求出AC,BC的长,即可求出△ABC的周长;

(2)利用勾股定理的逆定理即可证明.解:(1)∵CD是AB边上高,∴∠CDA=∠CDB=90°,∴AC==20,BC==15,∵AB=AD+BD=25,∴△ABC的周长=AB+BC+AC=25+20+15=60;

(2)△ABC是直角三角形,理由如下:

202+152=252,即AC2+BC2=AB2,∴△ABC是直角三角形.

【点睛】

本题主要考查了勾股定理以及其逆定理的运用;熟练掌握勾股定理与勾股定理的逆定理是解决问题的关键.

27.已知,如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:

(1)t为______时,△PBQ是等边三角形?

(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.

【答案】(1)12;(2)当t为9或时,△PBQ是直角三角形,理由见解析.【解析】

(1)根据等边三角形的性质解答即可;

(2)分两种情况利用直角三角形的性质解答即可.(1)要使,△PBQ是等边三角形,即可得:PB=BQ,∵在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.

∴AB=36cm,可得:PB=36-2t,BQ=t,即36-2t=t,解得:t=12

故答案为;12

(2)当t为9或时,△PBQ是直角三角形,理由如下:

∵∠C=90°,∠A=30°,BC=18cm

∴AB=2BC=18×2=36(cm)

∵动点P以2cm/s,Q以1cm/s的速度出发

∴BP=AB-AP=36-2t,BQ=t

∵△PBQ是直角三角形

∴BP=2BQ或BQ=2BP

当BP=2BQ时,36-2t=2t

解得t=9

当BQ=2BP时,t=2(36-2t)

解得t=

所以,当t为9或时,△PBQ是直角三角形.

【点睛】

此题考查了等边三角形的判定和含30°角的直角三角形的性质,关键是含30°角的直角三角形的性质的逆定理解答.

28.如图,正方形网格MNPQ中,每个小方格的边长都相等,正方形ABCD的顶点在正方形MNPQ的4条边的小方格顶点上.

(1)设正方形MNPQ网格内的每个小方格的边长为1,求:

①△ABQ,△BCM,△CDN,△ADP的面积;

②正方形ABCD的面积.

(2)设MB=a,BQ=b,利用这个图形中的直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?

【答案】(1)①S△ABQ=6,S△BCM=6,S△CDN=6,S△ADP=6;②S正方形ABCD=25;(2)验证了勾股定理,证明过程详见解析.【解析】

【解析】

(1)①根据直角三角形的面积公式即可得出结果;

②由题意得出S正方形ABCD=S正方形MNPQ﹣4S△ABQ,即可得出结果;

(2)显然根据面积能够验证勾股定理.(1)①∵网格中每个小正方形的边长为1,由图可知AQ=3,BQ=4,∠Q=90°,∴S△ABQAQ•BQ=6;同理S△BCM=S△CDN=S△ADP=6.

②∵MQ=7,∴S正方形MNPQ=72=49,∴S正方形ABCD=S正方形MNPQ﹣4S△ABQ=49﹣4×6=25.

(2)验证勾股定理.

验证:在△BCM和△ABQ中,∵BM=AQ,∠M=∠Q,CM=BQ,∴△BCM≌△ABQ(SAS),同理△CDN≌△DAP≌△BCM.

∵S正方形ABCD=S正方形MNPQ﹣4S△ABQ

∴AB2=(a+b)2﹣4ab,即AB2=a2+b2.

设AB=c,得:c2=a2+b2(勾股定理).

【点睛】

本题考查了勾股定理的证明、正方形的性质以及面积的计算、三角形面积的计算;掌握正方形和三角形面积的计算方法是解决问题的关键.

29.如图(1),在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,则有a2+b2=c2;如图(2),△ABC为锐角三角形时,小明猜想a2+b2>c2,理由如下:

设CD=x,在Rt△ADC中,AD2=b2-x2,在Rt△ADB中,AD2=c2-(a-x)2,则b2-x2=c2-(a-x)2,所以a2+b2=c2+2ax,因为a>0,x>0,所以2ax>0,所以a2+b2>c2,所以当△ABC为锐角三角形时a2+b2>c2.所以小明的猜想是正确的.(1)请你猜想,当△ABC为钝角三角形时,a2+b2与c2的大小关系;

(2)证明你猜想的结论是否正确.【答案】(1)a2+b2

【解析】

(1)根据题意可猜测:当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2;

(2)过点A作AD⊥BC于点D;然后设CD=x,分别在Rt△ADC与Rt△ADB中,表示出AD2,即可证得结论.(1)当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2;

(2)如图3,过点A作AD⊥BC于点D,设CD=x.

在Rt△ADC中,AD2=b2﹣x2.在Rt△ADB中,AD2=c2﹣(a+x)2,∴b2﹣x2=c2﹣(a+x)2,∴a2+b2=c2﹣2ax.

∵a>0,x>0,∴2ax>0,∴a2+b2<c2,∴当△ABC为钝角三角形时,a2+b2<c2.

【点睛】

本题考查了勾股定理.注意理解题意是解答此题的关键.

30.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3

.(1)

如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)

(2)

如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;

(3)

若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.【答案】(1)S1=S2+S3;(2)S1=S2+S3;(3)S1=S2+S3

【解析】

【解析】

(1)根据勾股定理即可得到结论;(2)根据圆的面积公式及勾股定理得出S1、S2、S3之间的关系即可;(3)利用等边三角形的面积公式以及勾股定理即可得到结论.(1)如图②,在Rt△ABC中,利用勾股定理得AB2=AC2+BC2,即S1=S2+S3.(2)如图①,在Rt△ABC中,利用勾股定理得AB2=AC2+BC2,则,故S1=S2+S3.(3)如图③,以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,在Rt△ABC中,利用勾股定理得AB2=AC2+BC2,则,故S1=S2+S3.【点睛】

本题重点考查了勾股定理,即在直角三角形中两直角边的平方和等于斜边的平方,本题的解题关键在于熟练掌握勾股定理的内容,分析题中各面积的关系.31.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为_______,AE、BD所在直线的位置关系为________;

(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由;

(3)解决问题:如图3,已知△ABC中,AB=7,BC=3,∠ABC=45°,以AC为直角边作等腰直角△ACD,∠CAD=90°,AC=AD,连接BD,则的长为

【答案】(1)相等,垂直;(2)AD=2CM+BD;(3)或7﹣3

【解析】

(1)结论:AE=BD,AE⊥BD.如图1中,延长AE交BD于点H,AH交BC于点O.只要证明△ACE≌△BCD(SAS),即可解决问题;

(2)结论:AD=2CM+BD,只要证明△ACE≌△BCD(SAS),即可解决问题;

(3)分两种情形分别画出图形,构造全等三角形解决问题即可;(1)结论:AE=BD,AE⊥BD.

理由:如图1中,延长AE交BD于点H,AH交BC于点O.

∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°

∴∠AHB=90°,∴AE⊥BD.

故答案是:AE=BD,AE⊥BD.

(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.

∴∠ADB=∠BDC﹣∠CDE=135°﹣45°=90°;

在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.

∴AD=DE+AE=2CM+BD.

(3)情形1:如图3﹣1中,在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.

∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴△EAC≌△BAD(SAS),∴BD=CE.

∵AE=AB=7,∴BE=,∠ABE=∠AEB=45°,又∵∠ABC=45°,∴∠ABC+∠ABE=45°+45°=90°,∴EC=,∴BD=CE=.

情形2:如图3﹣2中,作AE⊥AB交BC的延长线于E,则△ABE是等腰直角三角形,同法可证:△EAC≌△BAD(SAS),∴BD=CE,∵AB=AE=7,∴BE=7,∴EC=BE=CB=7﹣3,综上所述,BD的长为或7﹣3.

【点睛】

考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题.

本类热门