工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 范文大全 > 一号文库

22.2 第2课时 相似三角形判定定理1 同步练习 沪科版九年级数学上册(含答案)

最新文章

22.2 第2课时 相似三角形判定定理1

一、选择题

1.如图1,若DE∥FG,且AD=DF,则△ADE与△AFG的相似比为

()

图1

A.1∶2

B.1∶3

C.2∶3

D.2∶5

2.如图2,在△ABC中,DE∥BC,ADDB=12,DE=3,则BC的长是

()

图2

A.6

B.8

C.9

D.12

3.若△ABC∽△A'B'C',∠C=∠C'=90°,AB=5,AC=3,A'B'=10,则B'C'的长为

()

A.8

B.10

C.6

D.无法确定

4.若三角形的三边长之比为3∶5∶7,与它相似的三角形的最长边长是21,则另两边长之和是

()

A.15

B.18

C.21

D.24

5.如图3,F是▱ABCD的对角线BD上的一点,BF∶DF=1∶3,则BE∶EC的值为()

图3

A.12

B.13

C.23

D.14

二、填空题

6.如图4,已知AB∥EF∥DC,则△AOB∽    ∽△COD.图4

7.如图5,直线l1,l2,…,l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3,l6相交于点B,E和点C,F.若BC=2,则EF的长是.图5

8.如图6,E是▱ABCD的边CB延长线上一点,EA分别交CD,BD的延长线于点F,G,则图中相似三角形共有    对.图6

9.如图7,在▱ABCD中,点E在AB上,CE,BD交于点F.若AE∶BE=4∶3,且BF=2,则DF=.图7

10.如图8,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD=2,BC=4,则EF=.图8

三、解答题

11.如图9,已知△ABC∽△ADE,AE=5,EC=2.5,BC=4.77,∠BAC=∠C=40°.(1)求∠AED与∠ADE的大小;

(2)求DE的长度.图9

12.如图10,在△ABC中,点D在边AB上,点F,E在边AC上,DE∥BC,DF∥BE.求证:DFDE=BEBC.图10

13.如图11,在▱ABCD中,E,F分别是边BC,CD上的点,且EF∥BD,AE,AF分别交BD于点G和点H,BD=12,EF=8.求:

(1)DFAB的值;(2)线段GH的长.图11

14.如图12,AD是△ABC的中线,点E在AC上,BE交AD于点F.某数学兴趣小组在研究这个图形时得到如下结论:

(1)当AFAD=12时,AEAC=13;

(2)当AFAD=13时,AEAC=15;

(3)当AFAD=14时,AEAC=17;

……

当AFAD=1n+1时,求AEAC的值,并说明理由.图12

答案

1.A

2.[解析]

C ∵DE∥BC,∴△ADE∽△ABC,∴DEBC=ADAB=ADAD+DB=13,∴BC=3DE=3×3=9.3.[解析]

A ∵△ABC∽△A'B'C',∴ABA'B'=BCB'C'.∵∠C=90°,∴BC=AB2-AC2=52-32=4,∴510=4B'C',解得B'C'=8.故选A.4.[解析]

D ∵相似三角形的对应边成比例,∴与已知三角形相似的三角形的三边长之比也为3∶5∶7,∴另两边长分别为9和15,∴另两边长之和为24,故选D.5.[解析]

A ∵四边形ABCD是平行四边形,∴AD=BC,BE∥AD,∴△BEF∽△DAF,∴BE∶DA=BF∶DF=1∶3,∴BE∶BC=1∶3,∴BE∶EC=1∶2.6.[答案]

△FOE

[解析]

∵AB∥EF,∴△AOB∽△FOE.∵EF∥DC,∴△FOE∽△COD.7.[答案]

[解析]

∵l3∥l6,∴BC∥EF,∴△ABC∽△AEF,∴BCEF=ABAE=25.∵BC=2,∴EF=5.8.[答案]

[解析]

∵四边形ABCD为平行四边形,∴BC∥AD,AB∥CD,△ABD∽△CDB.∵AB∥CF,∴△EAB∽△EFC.∵AD∥EC,∴△AFD∽△EFC,∴△EAB∽△AFD.∵AD∥BE,∴△ADG∽△EBG.∵DF∥AB,∴△GDF∽△GBA.∴总共有6对.9.[答案]

143

[解析]

∵在▱ABCD中,AB∥CD,AB=CD,∴△BEF∽△DCF,∴BEDC=BFDF.∵AE∶BE=4∶3,∴BEDC=37=BFDF.∵BF=2,∴DF=143.10.[答案]

[解析]

∵DE∥BC,∴∠F=∠FBC.∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DF=BD=2.∵DE∥BC,∴△ADE∽△ABC,∴ADAD+BD=DEBC,即11+2=DE4,解得DE=43,∴EF=DF-DE=2-43=23.故答案为23.11.解:(1)由△ABC∽△ADE可知,∠AED=∠C.∵∠BAC=∠C=40°,∴∠AED=∠C=∠BAC=40°,∴∠ADE=180°-∠BAC-∠AED=100°.(2)由△ABC∽△ADE可知AEAC=DEBC,∴57.5=DE4.77,∴DE=3.18.12.证明:∵DE∥BC,∴△ADE∽△ABC,∴ADAB=DEBC.∵DF∥BE,∴△ADF∽△ABE,∴ADAB=DFBE,∴DFBE=DEBC,∴DFDE=BEBC.13.解:(1)∵EF∥BD,∴△CFE∽△CDB,∴FCDC=EFBD=812=23,∴DFDC=13.又∵DC=AB,∴DFAB=13.(2)∵DC∥AB,∴△DFH∽△BAH,∴FHAH=DFBA=13,∴AHAF=34.∵EF∥BD,∴△AHG∽△AFE,∴GHEF=AHAF=34,∴GH=34EF=34×8=6.[素养提升]

解:当AFAD=1n+1时,AEAC=12n+1.理由如下:如图,过点D作DG∥BE,交AC于点G,∴△AEF∽△AGD,则AEAG=AFAD=1n+1,∴AEEG=1n,即EG=nAE.∵AD是△ABC的中线,DG∥BE,∴EG=CG,则AC=(2n+1)AE,∴AEAC=12n+1.

本类热门