心得体会是我们在成长和进步的过程中所获得的宝贵财富。心得体会是我们对于所经历的事件、经验和教训的总结和反思。以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。
随着科技的发展和互联网的普及,大数据逐渐成为现代社会的一个重要议题。大数据不仅给人们的生活带来了极大的便利,也对各行各业的发展产生了深远的影响。在我与大数据的接触中,我深刻认识到大数据的重要性,并从中得到了许多心得体会。以下是我对大数据的理解和感悟。
首先,在大数据的背后隐藏着巨大的商机。随着大数据的崛起,越来越多的企业开始意识到大数据的商业潜力。通过分析海量的数据,企业可以深入了解市场需求、消费者习惯以及竞争对手的情况,从而有效地制定营销策略和业务发展方向。例如,在电商领域,通过大数据分析消费者的浏览行为和购买偏好,企业可以精准地推荐产品,提高销售转化率。在金融领域,通过分析大数据,可以发现潜在的风险和机会,有效预测市场走向。因此,我认为,掌握大数据分析能力将成为未来企业竞争的关键之一。
其次,大数据给个人提供了更多的机会和选择。在过去,人们的生活和工作范围受限于地理位置和资源的限制,很难积累一些特定领域的知识和经验。而如今,有了大数据,我们可以通过互联网获取大量的信息和资源,学习和探索任何我们感兴趣的领域。例如,通过在线教育平台,我们可以随时随地对自己感兴趣的知识进行学习,提升自己的能力。同时,对于创业者来说,大数据也提供了更多的商机。我们可以通过大数据分析发现市场的空白和需求,从而创办自己的公司或发展新的业务。因此,大数据为个人的发展提供了更多的机会和选择。
第三,大数据的应用推动了传统行业的转型与升级。随着大数据技术的成熟和应用的普及,越来越多的传统行业开始引入大数据分析和人工智能技术,以提高效率和降低成本。例如,制造业通过大数据分析生产过程中的数据,实现智能化生产和优化生产线布局,提高生产效率和产品质量。医疗行业通过分析大量的病历和医学数据,可以提前预测疾病风险,为患者提供更加精准的诊断和治疗方案。因此,大数据的应用推动了传统行业的升级和改造,提高了整体产业的竞争力。
第四,大数据也给我们的社会带来了一些隐忧和风险。尽管大数据带来了很多好处,但它也引发了一系列隐私和安全问题。在大数据时代,我们的个人信息和行为可以被收集、存储和分析,我们的隐私面临着更大的侵犯。另外,大数据分析中可能出现的偏见和错误也给我们的决策带来了风险。因此,我们需要建立相应的法律法规和技术手段,保护个人隐私,减少误导和错误的影响。
最后,我深刻认识到,大数据只是一个工具和手段,最关键的还是人。无论多么先进的大数据技术,最终的应用和决策还是需要人来负责和管理。因此,我们需要加强对大数据技术的学习和理解,提高自身的数据分析能力和逻辑思维能力,以更好地应对和利用大数据时代的机遇和挑战。
综上所述,大数据对我们的社会和生活产生了巨大的影响。它不仅给企业带来了商机,也给个人提供了更多的机会和选择。大数据的应用推动了传统行业的转型与升级,但也引发了一些隐忧和风险。因此,我们需要理性看待和利用大数据,加强对大数据技术的学习和规范,以更好地应对和引领大数据时代的变革。
描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。
问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。
问题二:当时未找到tcp/ip属性这一栏。
解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。
问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件。
问题四:在此处的sqlserver的导入和导出向导,这个过程非常的长。
解决办法:在此处的sqlserver的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。
问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对。
解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。(如图所示)。
这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。
问题六:由于发生以下连接问题,无法将项目部署到“localhost”服务器:无法建立连接。请确保该服务器正在运行。若要验证或更新目标服务器的名称,请在解决方案资源管理器中右键单击相应的项目、选择“项目属性”、单击“部署”选项卡,然后输入服务器的名称。”因为我在配置数据源的时候就无法识别“localhost”,所以我就打开数据库属性页面:图1-图2图一:
图二:
解决办法:解决办法:图2步骤1:从图1到图2后,将目标下的“服务器”成自己的sqlserver服务器名称行sqlservermanagementstudio可以)步骤2:点确定后,选择“处理”,就可以成功部署了。
问题七:无法登陆界面如图:
解决方法:尝试了其他用户登陆,就好了。
(1)在几周的学习中,通过老师课堂上耐心细致的讲解,耐心的指导我们如何一步一步的安装软件,以及老师那些简单清晰明了的课件,是我了解了sql的基础知识,学会了如何创建数据库,以及一些基本的数据应用。陌生到熟悉的过程,从中经历了也体会到了很多感受,面临不同的知识组织,我们也遇到不同困难。
理大数据的规模。大数据进修学习内容模板:
linux安装,文件系统,系统性能分析hadoop学习原理。
大数据飞速发展时代,做一个合格的大数据开发工程师,只有不断完善自己,不断提高自己技术水平,这是一门神奇的课程。
2、在学习sql的过程中,让我们明白了原来自己的电脑可以成为一个数据库,也可以做很多意想不到的事。以及在学习的过程中让我的动手能力增强了,也让我更加懂得了原来电脑的世界是如此的博大精深,如此的神秘。通过这次的学习锻炼了我们的动手能力,上网查阅的能力。改善了我只会用电脑上网的尴尬处境,是电脑的用处更大。让我们的小组更加的团结,每个人对自己的分工更加的明确,也锻炼了我们的团结协作,互帮互助的能力。
3、如果再有机会进行平台搭建,会比这一次的安装更加顺手。而在导入数据库和报表等方面也可以避免再犯相同的错误,在安装lls时可以做的更好。相信报表分析也会做的更加简单明了有条理。
总结。
大数据时代是信息化社会发展必然趋势在大学的最后一学期里学习了这门课程是我们受益匪浅。让我们知道了大数据大量的存在于现代社会生活中随着新兴技术的发展与互联网底层技术的革新数据正在呈指数级增长所有数据的产生形式都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。
大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代的发展才能在以后的工作生活中中获得更多的知识和经验。
三、
结语。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
第一段:引言(150字)。
随着互联网的快速发展和科技的不断进步,大数据已经成为人们日常生活中不可或缺的一部分。对学生们而言,学习大数据分析的知识也变得越来越重要。在我大数据学习的过程中,我积累了许多宝贵的经验和心得体会。在这篇文章中,我将分享一些学习大数据的心得,并探讨大数据技术在学习和生活中的应用。
第二段:学习大数据的目的与方法(250字)。
学习大数据的主要目的是了解和分析数据,并从中获取有用的信息。在学习大数据的过程中,我意识到数据的质量对于分析的重要性。我们需要注意数据的来源和准确性,以确保得到的结果是可靠的。另外,学习大数据也需要掌握一些基本的分析方法和工具,如数据挖掘和机器学习算法。这些方法和工具可以帮助我们更好地理解和解释数据。
学习大数据的方法多种多样。首先,我们可以参加一些线下或线上的培训课程,如大数据分析课程或数据科学学位。这些课程可以帮助我们系统地学习大数据的知识和技能。此外,我们还可以通过参加一些实际项目或竞赛来巩固和应用所学的知识。这些实践经验对于提高我们的分析能力和解决实际问题非常有帮助。最后,我们还可以利用一些开源的数据分析工具和平台,如Python、R和Hadoop等,来实践我们学习到的知识。
第三段:大数据在学习中的应用(300字)。
大数据技术在学习中有着广泛的应用。首先,我们可以利用大数据分析提供的工具和方法来帮助我们更好地管理和利用学习资源。通过分析学生的学习行为和习惯,我们可以了解学生的学习偏好,并根据个体差异提供个性化的学习建议。此外,通过对学生学习行为和成绩的分析,我们可以发现学生的学术问题和挑战,并及时采取措施来改进学生的学习效果。
其次,大数据技术可以帮助学生更好地进行学习评估和挖掘潜力。通过分析学生的学习成绩和其他相关数据,我们可以评估学生的学术表现和潜力,为学生提供个性化的学习规划和发展建议。此外,通过对学生的学习数据进行挖掘和分析,我们还可以发现学生的学科兴趣和潜在的职业方向,帮助他们更好地规划未来发展。
第四段:大数据在生活中的应用(300字)。
除了在学习中的应用,大数据技术还在生活中起到了重要的作用。首先,大数据分析可以帮助我们更好地了解消费者行为和市场需求。通过分析大量的消费数据和消费者反馈,企业可以把握市场动向,提供符合消费者需求的产品和服务。
其次,大数据分析还可以帮助我们更好地管理和规划城市发展。通过分析城市的交通流量、人口分布和环境污染等数据,政府可以制定更科学合理的城市规划和交通管理策略,提高城市的可持续发展水平。
另外,大数据技术还可以在医疗健康领域发挥重要的作用。通过分析医疗数据和病患信息,医疗机构和研究机构可以发现疾病的潜在原因和治疗方法,提高医疗资源的利用效率,改善医疗服务的质量和效果。
第五段:结论(200字)。
在学习大数据的过程中,我意识到大数据已经渗透到我们的生活中的方方面面。学习大数据不仅可以帮助我们更好地了解和分析数据,还可以在学习和生活中发挥重要的作用。通过学习大数据,我们不仅可以提高自己的技能和竞争力,还可以为社会的发展和进步做出贡献。尽管学习大数据存在一定的挑战,但只要我们抱着积极的态度并不断努力学习,我们一定能够取得成功。
在过去十几年里,数据已经成为我们生活中无处不在的一部分。从社交媒体到通信应用程序,我们的行为留下了大量可挖掘的数据。而这些数据可以帮助企业和政府机构以一种无以伦比的方式进行分析,以实现效率和决策的优化。自己也在参加了一些大数据考察活动后,我对大数据的观念有了新的认识,也掌握了更多的技能。
首先,对数据的转化和呈现有了更深入的理解。通过参加数据考察活动,我理解了数据趋势和数据可视化的概念。这让我明白了如何将大量数据转化成更可读的形式。即便是在巨量数据的情况下,我们完全可以在不失精度情况下挖掘更多信息。这些数据可视化的技巧也使得我可以在不使用复杂软件的情况下,更简单地制作和展示数据。
其次,大数据考察也让我更深入地理解了机器学习和AI深度神经网络的原理。在机器学习的过程中,我们可以将模型训练成对数据进行更精细的预测。这些预测只需要使用算法和预处理数据即可实现。这种预测能够帮我们挖掘出数据中的趋势,利用这些信息可以提高企业的效益和优化决策。而深度神经网络设计的算法可以使我们更好地模拟人类大脑的学习机制,从而提高人工智能的性能和鲁棒性。
此外,数据考察活动还让我明白了数据隐私和安全的意义和重要性。随着数据的采集和处理越来越普遍,我们也面临着数据泄露和滥用的风险。因此,在这个时代,我们需要主动保护我们的个人数据和隐私。政府和企业也应该做出足够的保障,保障公民和客户的数据安全和隐私性。
最后,数据考察活动也让我体验到了团队协作真正的力量。在处理复杂的数据时,一种比较省时和成本效益的方式是组织一个有能力和资格的团队进行工作。团队协助,调动每个人的聪明才智,才能获得最好的结果。因此,关键的一点往往就是团队协作,这也是数据考察活动带给我的最大感受。
总之,数据和大数据已经成为我们社会不可或缺的一部分。只有掌握了大数据的核心技能,我们才能在这个时代立足。而大数据考察活动,不仅仅让我们学会了如何存储,处理和展示大量的数据,也让我们尝试着用数据解决复杂实际问题的过程中懂得了更多。
随着信息技术的飞速发展,大数据分析成为了当今社会的热门技术。许多人纷纷投身于大数据领域,并希望能够通过自学来成为一名合格的数据分析师。作为一名自学者,我也深深地体会到了学习大数据的过程中的艰辛与收获。在这篇文章中,我将分享我在自学大数据过程中的体会和心得,包括挑战和困惑,以及如何克服它们并取得有效的学习结果。
首先,自学大数据面临的最大挑战是缺乏系统性和指导性。大数据领域的知识庞杂而且繁多,如果没有一个系统的学习计划和具体的指导,很容易迷失在知识的海洋中。因此,我首先花了大量的时间来寻找合适的学习资料和课程。在不断试错和优化的过程中,我终于找到了一些好的学习资源,包括一些专业的在线课程和教材。这些资源为我提供了一个有组织的学习框架,帮助我更好地理解和掌握大数据的基本知识和技能。
其次,自学大数据需要坚持和耐心。大数据技术的学习过程是长期而繁琐的,需要长时间的积累和持续的学习。在学习的过程中,我常常会遇到疲倦和厌烦的情绪,甚至有时会怀疑自己的能力和付出的价值。然而,我意识到这是学习过程中的一种常见反应,只有坚持和耐心,才能够克服困难,取得学习的进展。因此,我制定了每天固定的学习计划,并且坚持不懈地执行它。通过不断的坚持,我逐渐养成了每天学习的习惯,并且在学习的过程中逐渐积累了大量的知识和技能。
然而,自学大数据也存在着困惑和困难。大数据领域的知识体系广泛而复杂,有时候我会感到困惑和迷失,不知道应该从何处入手或者如何更好地理解和应用所学知识。为了克服这些困难,我主动参加了一些大数据相关的讨论和研讨会,并且积极地与其他自学者和专业人士进行交流和讨论。这些交流和讨论不仅帮助我更好地理解和消化所学知识,还为我提供了实际问题解决的思路和方法。此外,我还会主动寻找一些实际应用和项目来加深和巩固所学知识。通过实践和实际操作,我能够更好地理解和掌握所学内容,并且更快地提高自己的技能水平。
最后,自学大数据需要不断更新和学习的意识。大数据技术日新月异,更新换代的速度非常快。为了跟上行业的发展和要求,我意识到只靠传统的学习方法和资源已经不够了,需要不断地学习和追求进步。因此,我积极参加一些线下培训和研讨会,并且关注一些优秀的大数据博客和论坛。通过学习最新的技术和动态,我不仅能够了解到行业的最新趋势和要求,还能够与行业内的专家和从业者进行交流和讨论,拓宽自己的视野和知识背景。同时,我还通过参加一些大数据竞赛和项目来锻炼和提升自己的实际能力。
综上所述,自学大数据是一项具有挑战性的任务,但同时也是一种乐趣和成就感满满的学习过程。通过不断地学习和实践,我逐渐克服了学习中的困惑和困难,并且取得了一些显著的学习成果。我相信,只要坚持不懈,不断提升自己的能力和素质,就能够在大数据领域中取得更好的发展和成就。
大数据已经成为当下的热门话题,越来越多的企业开始将其融入到自己的发展中。在这样的背景下,由中国数据产业领袖峰会举办的“大数据之夜”活动吸引了许多人前来参加。我也深感荣幸能够参加其中,下面我将分享一下我在这次活动中的心得体会。
第二段:活动内容介绍。
在本次活动中,一些著名的企业家、学者和专家出席了会议,他们主要从大数据方面给我们进行了分享。在会上,他们分别从不同的角度,就大数据在各个行业中的应用、数据分析技术的发展等方面进行了深入的探讨和阐述。此外,在现场还有一些实际的案例和产品展示,都让我们深刻感受到了大数据技术的强大。
第三段:启发。
本次活动最让我印象深刻的是各位嘉宾的演讲。他们不仅仅是为我们介绍了各种大数据技术,在实际的应用中也给予了我们很多启发。其中,有一位演讲者告诉我们:“大数据不是简单地获取数据,而是如何将数据转化为价值”。这让我意识到,我们在使用大数据方面不仅仅要注重数据的收集和分析,更要考虑如何将其转化为实际的应用。
第四段:思考。
本次活动给我带来了很多启发和思考。我深感到,大数据技术虽然十分强大,但仅仅是技术的积累和应用还远远不够。我们需要考虑从多个角度进行创新和思考,将大数据技术运用到我们的现实生活中。同时,我们也要深入了解各种大数据技术的适用场景,这样才能更好地运用它,落地实现。
第五段:总结。
通过本次活动,我感受到了大数据技术的应用和价值,在思考和学习的过程中,也开启了我对大数据技术的探索。我相信,随着技术的不断发展,大数据将在未来的发展中扮演着越来越重要的角色。我也希望,在这个时代的浪潮下,我们都能够把握机遇,为自己和这个时代创造更多的价值。
读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。
这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。
其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。
大家应该都知道20__年出现的h1n1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!
在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。
在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!
大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。
大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。
大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
本书从思维、商业、管理三个方面阐述了在大数据时代在下的变革,这些变革涉及到我们生活的方方面面,几乎其影响程度可以与两次工业革命相媲美。作者在第一部分提出了三个比较令人震惊的观点,也就是大数据的精髓在于我们分析信息时的三个转变,这三个转变将改变我们的理解和组建社会的方法。并且作者将生活,工作思维的大变革和这几个方面紧紧联系在一起。
第三个改变是不是因果关系而是相关关系,在大数据时代,我们更需要了解一个东西是什么,而不是为什么,要找到关联无,通过一个良好的关联物的相关关系可以帮助我们捕捉预测未来。
这三个方面是大数据时代所给我们带来的思维上的改变,所谓思路决定出路,思路有了创新,有了拓展,相应的社会也就会有很大的变化。紧接着第二部分作者从万事万物数据化和数据交叉复用的巨大价值两个方面,讲述驱动大数据战车在材质和智力方面向前滚动的最根本动力。第三部分则是阐述了大数据时代下的弊端以及在管理上的措施。个人认为本书的精髓部分是第一部分,第一部分的三个观点涉及的面很广,包括统计学、逻辑学、哲学等。后两个部分都是以第一部分这三个观点为基础展开阐述的。
这本书给我感触最深的.就是这三个转变,或者说是三个观点,可以说是哲学上说的世界观,因为世界观决定方法论,所以这三个观点对传统看法的颠覆,就会导致各种变革的发生。
首先是第一个,作者认为在抽样研究时期,由于研究条件的欠缺,只能以少量的数据获取最大的信息,而在大数据时代,我们可以获得海量的数据,抽样自然就失去它的意义了。放弃了随机分析法这种捷径,采用所有的数据。作者用大数据与乔布斯的癌症治疗例子说明了使用全部数据而非样本的意义,列举了日本“相扑”等来证明使用全体数据的重要性。
这个观点足以引起统计学乃至社会文明的变革,因为统计抽样和几何学定理、万有引力一样被看做文明得以建立牢固的基石。我对这个观点还是比较认同的,如果真能收集到整体的数据而且分析数据的工具也足够先进,自然是全体数据研究得出的结果更令人信服。但是这个观点也过于绝对,就算是在大数据时代要想收集到全体数据还是不太可能实现的,因为收集全体数据要付出的代价有时会很大。比如说,你要检测食品中致癌物质是否超标,你不可能每一件食品你都检测一遍吧。
第二,要效率不要绝对的精确。作者说,执迷于精确性是信息缺乏时代和模拟时代的产物,只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用。作者是基于数据不可能百分之百正确的考虑而做出这样的判断的,如果采用小数据一个数据的错误就会导致结果的误差很大,但是如果数据足够多、数据足够杂那得出的结果就越靠近正确答案。大数据时代要求我们重新审视精确性的优劣,甚至还说到大数据不仅让我们不再期待精确性,也让我们无法实现精确性。谷歌翻译的成功很好地证明了这一点,谷歌的翻译系统不像candide那样精确地翻译每一句话,它谷歌翻译之所以优于ibm的candide系统并不是因为它拥有更好的算法机制,和微软的班科和布里尔一样,谷歌翻译增加了各种各样的数据,并且接受了有错误的数据。
而在阅读这本书时,发现这本书中争议最大的一个观点,不仅是读者,就算是本书的译者也在序言中明确地说到他不认同“相关关系比因果关系更重要”的观点。作者觉得相关关系对于预测一些事情已经足够了,不用花大力气去研究他们的因果关系。作者用林登的亚马逊推荐系统的成功,证实了大数据在分析相关性方面的优势以及在销售中获得的成功。沃尔玛也是充分利用并挖掘各类数据信息的代表,从啤酒和尿布的案例,以及作者举的有关蛋挞和飓风天气的案例,都说明了掌握了相关关系对于他们策略的帮助。
一句话,知道是什么就够了,不用知道为什么。很明显作者所举的例子都是属于商业领域的,但是对于其他领域来说这个观点就值得商榷了。比如说,在科学研究领域,你需要知其然也需要知道其所以然,找到事件发生的原理。用文中的一个例子说明,乔布斯测出整个基因图谱来治疗癌症,但是你治疗癌症你必须知道癌症发病的原理,知道哪一段基因导致了这种疾病,不可能只是说收集各种数据,然后利用其相关性来判断哪里出现了问题。
过度依赖所带来的后果。也用《少数派的报告》这部电影来说明如果痴迷于数据会导致我们将生活在一个没有独立选择和自由意志的社会,如果一切变为现实,我们将被禁锢在大数据的可能性之中。所以书中提出了几种解决方法,一种是使用数据时征询数据所有个人的知晓和授权。第二个技术途径就是匿名化。毫无疑问,大数据将会给社会管理带来巨大的变革。
在这个信息爆炸的时代,大数据给人类社会的方方面面带来了巨大的变革,这是社会发展的潮流,不可逆转,我们只有顺应这种潮流,把握住大数据时代变革的思想,才能在时代潮流中成为佼佼者,在思维上思路上略高一筹,才能在行动中占得先机!
第一段:引言(100字)。
大数据是当今信息社会的热门话题,也是未来发展的重要趋势之一。对于我个人而言,自学大数据技术是一项迫切的需求。在自学大数据的过程中,我尝试了很多不同的学习方法和工具,通过不断的实践与总结,我积累了一些关于自学大数据的心得体会。
第二段:选择合适的学习资源和平台(250字)。
在自学大数据之前,我首先需要选择合适的学习资源和平台。互联网上有很多提供大数据相关课程的学习平台,如Coursera、edX、Udemy等。我通过比较评价、查阅学习资料等方式,最终选择了适合自己的学习平台。此外,还可以通过参加线下培训班、研讨会等丰富学习的渠道。
第三段:制定计划与目标(250字)。
自学大数据需要一定的系统性和计划性,所以我在开始自学之前,制定了一份学习计划和目标。我按照自己的时间和能力,合理安排每天的学习时间和计划,确保每个阶段都能够掌握并运用相关的理论和技术。制定目标也是非常重要的,可以让我明确自己期望在多大的时间范围内达到何种水平。
第四段:合理分配学习时间与实践(350字)。
学习大数据不仅仅是理论的学习,更需要大量的实践。因此,在制定学习计划的同时,我也合理分配学习时间与实践。我将学习时间分为两部分,一部分用于学习相关知识和理论,并通过做题、做实验等实践验收学习成果;另一部分用于实际项目的实践操作。通过实际项目的实践,我能够更好地理解和掌握大数据技术,并将其应用于实际情境中。
第五段:持续学习与总结(450字)。
自学大数据是一个长期的过程,需要持续学习和不断总结。在学习过程中,我经常利用互联网上的各种学习资源,包括博客、教程、论坛等进行知识的深入学习和拓展。同时,我也定期进行学习总结,将学到的知识进行整理和归纳,以便更好地回顾和温习。此外,我还参与了一些专业社区和线下交流活动,与其他自学者交流经验和分享学习心得。
总结:
通过自学大数据的过程,我深刻体会到了持续学习和实践的重要性。自学大数据不仅仅是学习一门技术,更是培养综合能力和解决问题的能力。合理选择学习资源和平台、制定计划与目标、合理分配学习时间与实践、持续学习与总结都是自学大数据过程中需要注意和坚持的关键。通过不断学习和实践,我相信我会在大数据领域取得更大的进步。
根据中国汽车流通协会公布的数据显示,在经销商销量和收入均同比增加的情况下,连续两年入围百强的84家汽车经销商202_年毛利与202_年相比大幅下滑至25.79%。202_年,汽车经销商盈利面继续缩小,据统计,48.5%的经销商盈利状况持平,只有21.8%的经销商盈利,剩余的经销商处于亏损状态。当前,汽车产品已远远超出市场能够消化的程度,库存在不断地增加,目前全国共有20000多家经销商,按照当前的产销规模和经销商数量,经销商的压力可想而知。大面积的亏损,严重打击了经销商的信心,很多经销商纷纷退出汽车行业,转而寻找新的盈利机会,这种局面对于厂家来说也是无能为力,以“4s”店为主的营销渠道遇到了前所未有的危机。
一直以来,以“4s”店为主体的汽车品牌专营模式一直是汽车营销渠道的主流模式。不过随着互联网技术的发展,网络购物成为时下流行的生活方式,网络购物的商品也从小件商品延伸到了汽车产品领域。据j.d.power调查,有80%的经销商认为在线购车将成为未来趋势,并且认为这将影响到传统汽车销售业务。这样一来,传统“4s”店作为目前较大的营销渠道而言就遇到了前所未有的挑战。相比新兴互联网汽车业务来说,传统“4s”店营销模式的“短板”很突出。
(一)消费者满意度差。
“4s”店的背后是相对独立的经销商,作为经销商而言,追逐利润是第一位的。在市场火爆的情况下,会出现某款车型“加价提车”的现象,消费者甚至加价都提不到车的现象也时有发生,消费者对这种违背市场规律的行为已见怪不怪。虽心有怨言却也是无奈接受。在市场遇冷的情况下,经销商常常会以低于厂家指导价很多的促销价来博得销量,以得到厂家的年终返点,但是在这个促销价格中,包含着强制购买店内装饰和强制购买保险的捆绑销售行为,很让消费者反感。
(二)售后维修价格虚高。
“4s”店总是着眼于销售业绩,对售后服务的管理和如何提高客户满意度、怎样加强售后服务、提高技术水平的动力不足,“前店后厂”式的售后服务体系并未健全。在具体的售后服务中,由于技术水平高低不一、人员素质参差不齐、经济利益诱导等现实因素,“4s”店习惯在工时费、零配件价格上做手脚,售后维修价格虚高。这也是“4s”店遭到消费者普遍诟病的重要原因之一。
(三)运营成本过高一家。
“4s”店要达到标准化。
经营需要经历选址、征地(租地)、建店、招聘店员、培训、试运营等诸多环节,期间发生的征地或租地费用、建店工程款、各种税费、人员工资等所有费用都要摊薄到利润里面,这样一来,“4s”店的初始经营就要面临巨大的压力。小规模的“4s”店一般占地几千平方米,大规模的则达到上万平方米,每年的租地成本就要几百万元。如果土地不是租用的,“4s”店第一年购买土地的成本投入还会高出更多。一家“4s”店平均有大约100名员工,每年的人工支出通常要400万至500万元。仅就人员工资来说,对“4s”店而言就是一笔不小的负担。如果再加上其他开销,一家“4s”店的年运营成本往往接近千万元人民币。
据统计,目前全国近40家汽车经销商已签署了汽车经销商电商平台战略合作协议,依托现有的经销商线下渠道与线上资源相结合运营,40家经销商几乎涉及中国过半数经销商集团,规模可覆盖全国成千上万家汽车“4s”店及上亿汽车用户。同时,二手车业务以及汽车租赁业务的扩大,都将成为经销商利润提升的主要途径。在这种趋势下,传统“4s”店必须要做出变革。
(一)提升自身竞争力。
商务部于202_年1月发布了《汽车销售管理办法(征求意见稿)》,并将在今年内正式实施。新《办法》鼓励汽车销售模式多样化。新《办法》明确提到推动汽车流通模式创新,积极发展电子商务。这意味着“4s”店模式作为唯一授权销售渠道的时代彻底结束,新兴销售渠道和传统销售体系的共生融合成为趋势。在这种情况下,“4s”店一方面要做好接受市场的冲击,不能再固步自封,必须提升服务水平,注重差异化服务,降低运营成本,从自身挖掘盈利点,另一方面,要及时跟上市场步伐,要提高对市场的信息灵敏度,在实体店的基础上大力发展互联网业务。只有逐步提高自身竞争力,才能在互联网时代下生存。
(二)注重“线上线下”业务融合。
对于未来的互联网汽车营销,将不再是“4s”店来全部承担满足客户需求的重任,配套的有大量的城市展厅、体验中心甚至提供定制化服务的互联网平台。我们要建立一个在线上有智能终端,在线下以“4s”店为载体,能够实现线上和线下服务一体化的互联网销售体系,让用户能够在线上和线下之间自由选择。最终呈现给客户的是以汽车消费为主的“一站式”服务体验场景。汽车销售渠道的互联网化,一开始就是一个整体性的变化,不仅仅是新车、二手车,还包括后汽车市场,都在互联网化。未来有可能汽车电商和线下营销渠道是平行的,来让用户选择。目前来说,消费者最担心的是线上产品的质量和线下服务的承接能力,这就涉及到线上线下业务的融合。可以说,只有实现线上营销与实体经济的深度业务融合,汽车营销渠道“互联网+”的时代才算真正来临。
(三)重点打造智能终端app软件。
目前来看,在国内只有两种app营销方式,一是利用现有社交媒体app,比如微信、qq等,另一种是自己开发app。利用现有的社交媒体app的好处是能够迅速将营销内容推广给客户,传播效率高;缺点是目标客户群不明确,客户体验感差,缺乏互动。而企业自己开发的app的优势是能够独立掌控app资源,拥有自主运营权,内容灵活,客户体验感强;缺点是开发成本高,推广率低,下载安装注册认证程序繁琐,一般需要从企业官方的网站下载,而且无附加功能,客户粘性差。如果我们将社交媒体app和企业自己开发的app的优点相结合,打造基于社交媒体app的,这样一来用户的体验感更强,互动效果更好,客户粘度会更高。
互联网正悄悄改变着人们的消费习惯。在汽车消费领域,用户对整车电商的接受程度也变得越来越高。据尼尔森近期数据显示,有92%的客户在购买汽车时,都希望通过互联网来了解产品及相关信息。该机构数据显示,在中国,有86%的客户愿意通过互联网来购买汽车。互联网已经成为用户获取信息的重要渠道和购买终端。与以往不同,如今的消费者对决定购买的车型已越来越熟悉,汽车销售顾问已不用费劲介绍车型信息。此外,消费者在购车之前都会在汽车网站上对各款车的配置、优缺点、和各地区的成交价格进行反复对比。现阶段,越来越多的企业已开展了对互联网汽车业务的探索,无论是汽车企业、综合类传统电商还是汽车媒体,都纷纷开始布局汽车电商平台。总之,对于传统的汽车经销商而言,互联网时代危险与机遇并存。现阶段传统“4s”店只有加快用互联网的思维武装自己、改造自己,才能在互联网时代的渠道竞争中立于不败之地,真正成为“渠道之王”。
随着大数据技术的飞速发展,大数据应用的领域越来越广泛,引人瞩目。作为一名IT从业者,我也跟随着这股大数据热潮,前往大数据之夜现场参与活动。
大数据之夜是一个面向广大大数据从业者和爱好者的交流学习平台,在这里,我不仅深入了解了大数据技术的最新应用和发展趋势,还与来自各行业各领域的业内大咖进行了广泛而深入的交流。与他们的交流,让我深刻认识到了大数据的重要性和应用前景,加强了我的学习动力。
在大数据之夜现场,我特别关注讨论主题为大数据趋势与创新的环节。通过各位大咖的演讲,我了解到,大数据正成为驱动跨行业发展的核心力量,其应用前景无限。例如,AI在医疗、金融、安防等领域的深度应用。此外,当下大数据在推动一系列新技术、新商业模式的发展,让人不禁敬佩。
第四段:大数据应用与案例分析。
大数据之夜另一个重要环节是大数据应用与案例分析。在这里,我们有幸听到了各大行业大咖对大数据应用的深入剖析和分析。例如,在金融领域的风险控制、营销、客户服务等环节中,大数据的应用越来越广泛,为行业创造了巨大的价值。此外,大数据在物流、零售、交通出行、互联网内容分发等领域也有广泛的应用,解决了行业面临的诸多瓶颈和难题。
第五段:总结与展望。
大数据之夜是一次十分有意义的活动,让我深入了解大数据技术的应用和趋势,也加深了我对IT产业创新的认识和理解。随着大数据技术的不断发展和进步,我们可能会看到更多更广泛的大数据应用场景。作为一名从业者,我们更应该不断学习和探索,不断创新,为行业发展做出自己的贡献。
Copyright © wanshu.net All Rights Reserved.版权所有
本网站内容仅供参考,内容侵权或错误投诉:640661@qq.com
工信部备案号:鲁ICP备2020038323号-1