工作总结
职业工作总结 半年工作总结 年终工作总结 学校工作总结 公司工作总结 销售工作总结 医院工作总结 社区工作总结 个人工作总结 安全生产工作总结 工作总结范文 工作总结报告
优秀作文
英文作文 满分作文 小学作文 初中作文 高中作文 300字作文 400字作文 500字作文 600字作文 800字作文 读后感 观后感 日记 书信
合同协议
服务合同 IT行业合同 医疗医药合同 涉外合同 教育合同 婚姻家庭合同 银行信托合同 担保合同 买卖合同 借款合同 租赁合同 承揽合同 运输合同 经营合同 劳动合同 委托合同 房地产商投资合同 招标合同 赠与合同 合同样本 技术合同 保险合同 用工合同 合作协议 租房合同 购销合同 装修合同 销售合同 购房合同 采购合同 供货合同 劳务合同 承包合同 聘用合同 转让合同 代理合同 广告合同 加工合同 集体合同 加盟合同 合同书 知识产权合同 商标专利合同 建筑工程合同 施工合同 其它合同 证券合同
求职文档
个人简历 述职报告 实习报告 辞职报告 工作计划 入职转正 简历模板
党团工作
行政公文范文 机关行政公文 党团工作计划 入团申请书 入党申请书 入党思想汇报 转正申请书 自我鉴定 心得体会
毕业论文
经济论文 管理论文 文学论文 艺术论文 哲学论文 历史论文 法律论文 理工论文 计算机论文 医学论文 教育论文 其他论文
实用范文
演讲稿 礼仪范文 致辞 闭幕词 祝福短信 开幕词 祝酒词 婚礼大全 赠言大全 日常祝福语 问候语 生日祝福 结婚祝福语 其它礼仪 检讨书 心得体会 策划书 主持词 邀请函 口号 诗句大全 成语故事 名人名言 笑话 谚语 其它范文 精品范文 教学资源 企业文化 应用文书 自查报告 整改措施
范文大全
一号文库 二号文库 三号文库 四号文库 五号文库 六号文库 七号文库 八号文库 九号文库 十号文库
文库大全
首页 > 毕业论文 > 理工论文

胶体模型的玻璃化转变与动力学分析

最新文章

对于胶体悬浮液来说,体系是由固体颗粒分散在液体中所形成的,下面是小编搜集的一篇探究胶体模型的玻璃化转变的论文范文,供大家阅读查看。

1、胶体简介

胶体是日常生活中常见的一种软物质,指的是一种不连续介质分散在另外一种连续介质中的均匀混合物,分散质可以是固体,液体,也可以是气体,其长度尺寸一般介于10nm至10m之间。根据分散质的不同,胶体主要可以分为悬浮液、乳状液、泡沫、气溶胶等。胶体涉及我们生活的方方面面,比如墨水,护手霜,冰淇淋等都属于胶体范畴。

正因如此,对胶体的研究就显得很有意义。虽然在量子现象中研究范德瓦尔斯力这样的参量很重要,但是在胶体体系的尺度上,量子力学效应可以忽略,所以可以把胶体体系看作经典体系来进行研究。同时,由于胶体中分散质的尺寸足够小,体系的热力学涨落就不可忽略。比如在胶体悬浮液中,固体粒子和溶剂分子之间的随机相互碰撞形成的布朗运动,这是在实验上很容易观察到的一个现象。

在实验室当中,人们就可通过胶体体系来研究物质的相变。在六七十年代,实验中发现,胶体悬浮液在结构上和原子体系有诸多相似之处,这直接导致了在接下来的几十年里,人们广泛采用胶体作为模型去研究液体和晶体。比如在1982年,Lindsay和Chaikin通过将两种不同尺寸的带电胶体粒子混合在一起后,观察到了体系呈现出无序的结构和有限的刚度的玻璃态行为[1].在随后的1986年和1987年,Pusey和Megen在对不带电的高浓度胶体体系的研究中,也观察到了硬球胶体的玻璃化转变。

2、胶体模型的玻璃化转变

对于胶体悬浮液来说,体系是由固体颗粒分散在液体中所形成的。体系的关键参数则是堆积分数,其定义为固体颗粒所占整个空间的比例。当堆积分数很低时,体系中粒子能够自由扩散,体系呈现液态;随着堆积分数的增加,当接近于玻璃化转变点g时,体系的粘度将会急剧变大;当堆积分数达到玻璃化转变点之后,体系表现出与传统分子或聚合物玻璃体系相类似的行为。由于胶体粒子具有相对较大的尺寸,因此人们可以通过各种设备与技术来研究它,而这在分子原子尺度上,是比较难以实现的。

很多情况下,胶体微球就可以被看作一种简单的硬球。早在八十年代中期,Pusey和vanMegen就开始在实验上利用胶体体系来研究硬球体系的相图[2].这一研究之所以如此重要,主要是因为以下原因:粒子间的相互作用比较单一,且易于描述;粒子间的简单相互作用可以和诸多体系进行对比,并且在计算机模拟上较容易实现;可以通过显微镜,光散射,流变等一系列技术来研究。

Pusey和Megen曾采用PMMA微球来研究玻璃化转变,为了防止粒子间因范德瓦尔斯力而发生聚集,他们在粒子表面覆盖了一层约10nm的聚12羟基硬脂酸[3].正是由于这些硬质的涂覆层,粒子可以被看作硬球,因为当粒子非常靠近时,粒子间发生相互作用的是涂覆层。这些粒子在有机溶剂中非常稳定,同时在实验上也比较容易进行调整,比如染色后的粒子,就可以在摄荧光显微镜下观察。

3、动力学不均匀性

对于玻璃而言,体系中某些区域的动力学可能比另一些区域更快些,而这些区域在空间上也会比较紧凑,人们称这种现象为动力学不均匀性,也就是说系统中不同区域的弛豫速率是不同的。在这些系统中,弛豫的时间尺度和空间尺度相互耦合,也就是说较长的弛豫时间一般对应这较大的粒子团簇。在体系快要发生玻璃化转变时,粒子可能需要相互协同才能重排,所以通常用协同运动来描述动力学不均匀性。

动力学不均匀的现象也与牢笼受限和牢笼重排之间存在一定的关系。在短时间内,粒子做布朗运动,但是这种运动却因为粒子与周围粒子发生碰撞而受到限制。一个粒子的近邻粒子限制了该粒子,同时该粒子也是构成了包围其周围粒子笼子的一部分。在较长的时间尺度上来看,这些笼子就可能发生塌陷,体系也就随之发生了重排。

实验上所观察到的空间动力学不均匀性,与计算机模拟结果之间也存在高度的吻合。在玻璃化转变过程中,人们很容易观察到协同运动区域增大,但这和弛豫时间不断增大之间的关系还并不得而知。直观上讲,如果越来越多的粒子需要同时以协同的方式运动,这种粒子间的关联运动就可能是导致扩散时间的延长的直接原因。从这个角度讲,或许动力学不均匀性和玻璃化转变之间就连在了一起,也就可以说正是动力学不均匀性导致了玻璃化转变。

Cooper等人利用模拟的手段,模拟出一个能够发生重排的体系,为了得到结论,他们重复运行了具有相同初始构型的体系。

他们将初始构型经过分子动力学平衡,并且随机的赋予粒子初始速度。即使这样,他们发现动力学不均匀性和结构之间的关联性也很弱[4].正由于有模拟结果作为支撑,所以利用胶体体系研究动力学不均匀性的方向性显得更强。模拟的结果能够指导对实验数据的分析,更能够使得实验上存在困难或难以实现的研究得以开展。

Kob等人也通过计算机模拟,研究了一种新颖的随机pinning体系,他们随机的选择一部分粒子,把这些粒子固定住以对体系进行限制。这样就可以通过对该受限体系中运动粒子的研究,来探究玻璃体系中的动力学不均匀性了。他们发现随着pinning粒子比例的增加,体系的协同性就会减弱,这正是由于pinning粒子破坏了体系的协同重排区域所导致的。原本一个粒子的运动状态能够影响到周围的粒子,并传递下去,但是当有了pinning粒子之后,这种能量的传递被阻碍了,体系的协同性遭也就随之遭到了破坏[5].

4、结语

正如哈佛大学的Weitz教授所说的那样,玻璃化转变理论比研究这一理论的人还多。本文就介绍了以胶体作为模型体系研究玻璃化转变的相关知识,说明了胶体玻璃体系动力学特点,重点说明了动力学不均匀性这一玻璃体系特有的现象及其研究进展。

参考文献:

[1]Lindsay,H.,etal.,TheJournalofChemicalPhysics1982,76,(7),3774-3781.

[2].Pusey,P.,etal.,Phys.Rev.Lett.1987,59,(18),202_.

[3]Poon,W.C.,etal.,SoftMatter2012,8,(1),21-30.

[4]Widmer-Cooper,A.,etal.,Phys.Rev.Lett.202_,93,(13),135701.

[5]Kob,W.,etal.,PhysicalReviewE2014,90,(5),052305.

本类热门